Bayesian Estimation of Stress-Strength Parameter under Progressive Hybrid Censored Sample in Lomax Distribution

Message:
Article Type:
Research/Original Article (دارای رتبه معتبر)
Abstract:

The Bayesian estimation of the stress-strength parameter in Lomax distribution under the progressive hybrid censored sample is considered in three cases. First, assuming the stress and strength are two random variables with a common scale and different shape parameters. The Bayesian estimations of these parameters are approximated by Lindley method and the Gibbs algorithm. Second, assuming the scale parameter is known, the exact Bayes estimation of the stress-strength parameter is obtained. Third, assuming all parameters are unknown, the Bayesian estimation of the stress-strength parameter is derived via the Gibbs algorithm. Also, the maximum likelihood estimations are calculated, and the usefulness of the Bayesian estimations is confirmed, in comparison with them. Finally, the different methods are evaluated utilizing the Monte Carlo simulation and one real data set is analyzed.

Language:
Persian
Published:
Journal of Statistical Sciences, Volume:14 Issue: 2, 2020
Pages:
505 to 534
https://www.magiran.com/p2164188  
سامانه نویسندگان
  • Azizzadeh، Fatemeh
    Author (3)
    Azizzadeh, Fatemeh
    Assistant Professor Financial mathematics, Kharazmi University, تهران, Iran
اطلاعات نویسنده(گان) توسط ایشان ثبت و تکمیل شده‌است. برای مشاهده مشخصات و فهرست همه مطالب، صفحه رزومه را ببینید.