Application of SWEEP and AERMOD Models to Simulate PM10 Emission Risk from Primary Materials and Waste Depos of Tile and Ceramic, Khak-e-Chini and Glass Industries of Ardakan, Yazd, Iran in 2018

Message:
Article Type:
Research/Original Article (دارای رتبه معتبر)
Abstract:
Background

Application of air quality models in Health Risk Assessment system has been defined as an effective tool in assess the human population exposure to environmental harmful factors. The present study was conducted to aim of health risk assessment of respiratory exposure to PM10 Emitted from Depos of primary materials and waste a number of Non-metallic minerals industries by Modeling method.

Methods

In this descriptive study, first to Field visits and laboratory measurements was obtained the information needed for SWEEP model to estimate PM10 emission rate from depos of Tile and Ceramic, Khak-e-chini and glass industries. Then, with the introduction of meteorological information to AERMET, the digital elevation model to AERMAP, the emission rate and the geometric dimensions of the pollutant sources to AERMOD, simulated the values of exposure to PM10 in the affected population. The chemical composition of the depos was determined using ICP-MS. Subsequently, using the EPA suggested relationships was estimated the risk of carcinogenic and non-carcinogenic exposure to PM10.

Results

According to the simulation results of SWEEP model, the highest PM10 emission was estimated for the Tile and Ceramic depo. The highest concentration maximum of 1, 8, and 24 h of PM10 simulated were 8840, 1967, and 1272 µg/m3, respectively. The highest average respiratory exposure of 1 (52.53), 8 (11.64), 24 (5.85 µg/m3) hour to PM10 was estimated for Sand and Gravel processing plant staff. The highest percentage of chemical compounds in depos was for silica. Accordingly, the carcinogenicity risk (ILCR) of exposure to PM10 was predicted less than 10-4 and non- carcinogenicity risk (HQ) less than one.

Conclusion

Although numerical values of risk were predicted in the permissible limit, but to creating Surface rock on the depo industries can reduce the emission of PM10.

Language:
Persian
Published:
Journal of Environmental Health Engineering, Volume:7 Issue: 4, 2020
Pages:
401 to 426
magiran.com/p2180655  
دانلود و مطالعه متن این مقاله با یکی از روشهای زیر امکان پذیر است:
اشتراک شخصی
با عضویت و پرداخت آنلاین حق اشتراک یک‌ساله به مبلغ 1,390,000ريال می‌توانید 70 عنوان مطلب دانلود کنید!
اشتراک سازمانی
به کتابخانه دانشگاه یا محل کار خود پیشنهاد کنید تا اشتراک سازمانی این پایگاه را برای دسترسی نامحدود همه کاربران به متن مطالب تهیه نمایند!
توجه!
  • حق عضویت دریافتی صرف حمایت از نشریات عضو و نگهداری، تکمیل و توسعه مگیران می‌شود.
  • پرداخت حق اشتراک و دانلود مقالات اجازه بازنشر آن در سایر رسانه‌های چاپی و دیجیتال را به کاربر نمی‌دهد.
In order to view content subscription is required

Personal subscription
Subscribe magiran.com for 70 € euros via PayPal and download 70 articles during a year.
Organization subscription
Please contact us to subscribe your university or library for unlimited access!