Building a Comprehensive Conceptual Framework for Power Systems Resilience Metrics

Message:
Article Type:
Research/Original Article (دارای رتبه معتبر)
Abstract:

Recently, the frequency and severity of natural and man-made disasters (extreme events), which have a high-impact low-frequency (HILF) property, are increased. These disasters can lead to extensive outages, damages, and costs in electric power systems. A power system must be built with “resilience” against disasters, which means its ability to withstand disasters efficiently while ensuring the least possible interruption in the supply of electricity, sustaining critical social services, and enabling a quick recovery and restoration to the normal operation state. Quantifying the power system resilience is a complicated and controversial problem. However, this is necessary for the evaluation and comparison of different resilience enhancement strategies. The resilience metrics are mathematical tools to measure the resilience level of a power system, which are normally employed for resilience cost-benefit in the planning and operation domains. Numerous resilience metrics have been presented in the power system literature. However, there is a lack of a comprehensive conceptual framework regarding the different types of resilience metrics in electric power systems, and existing frameworks have essential shortcomings. In this paper, after introducing and criticizing the existing frameworks, a conceptual framework is suggested to classify different types of resilience metrics in the power system literature. In this conceptual framework, power system resilience metrics are divided into “non-performance-based” and “performance-based” groups. The “performance-based” resilience metrics are also divided into “performance” and “consequence (outcome)” groups. The “performance” resilience metrics consist of five groups including “power”, “duration”, “frequency”, “probability” and “curve”. The “consequence (outcome)” resilience metrics consist of four groups including “economic”, “social”, “geographic” and “safety and health”. In addition, both of the “performance” and “consequence (outcome)” groups have a distinct group naming “general”. In order to verify and validate the comprehensiveness and inclusivity of the proposed conceptual framework, two actions are accomplished. Firstly, the existing power system resilience metrics are allocated to the framework’s groups. Secondly, the proposed conceptual framework is compared with the existing frameworks. These actions show that the proposed conceptual framework can cover and classify different types of power system resilience metrics in the literature, is more comprehensive comparing the existing frameworks, and lacks the essential shortcoming of those frameworks. Thus, the proposed conceptual framework is comprehensive and useful. The proposed conceptual framework can be used by academic and industrial researchers. Academic researchers can concentrate on groups that need further research to propose new resilience metrics, whereas industrial researchers can choose the appropriate resilience metric according to their needs.

Language:
Persian
Published:
Iranian Electric Industry Journal of Quality and Productivity, Volume:10 Issue: 2, 2021
Pages:
28 to 39
magiran.com/p2294375  
دانلود و مطالعه متن این مقاله با یکی از روشهای زیر امکان پذیر است:
اشتراک شخصی
با عضویت و پرداخت آنلاین حق اشتراک یک‌ساله به مبلغ 1,390,000ريال می‌توانید 70 عنوان مطلب دانلود کنید!
اشتراک سازمانی
به کتابخانه دانشگاه یا محل کار خود پیشنهاد کنید تا اشتراک سازمانی این پایگاه را برای دسترسی نامحدود همه کاربران به متن مطالب تهیه نمایند!
توجه!
  • حق عضویت دریافتی صرف حمایت از نشریات عضو و نگهداری، تکمیل و توسعه مگیران می‌شود.
  • پرداخت حق اشتراک و دانلود مقالات اجازه بازنشر آن در سایر رسانه‌های چاپی و دیجیتال را به کاربر نمی‌دهد.
In order to view content subscription is required

Personal subscription
Subscribe magiran.com for 70 € euros via PayPal and download 70 articles during a year.
Organization subscription
Please contact us to subscribe your university or library for unlimited access!