Analysis of susceptibility of CO and NOx pollutants due to change of stabilizing jets characteristics in a gas turbine model combustion chamber

Message:
Article Type:
Research/Original Article (دارای رتبه معتبر)
Abstract:

The purpose of the present study was to investigate the susceptibility of NOx and CO pollutants due to the change of stabilizing jets characteristics in a gas turbine model combustion chamber. The change of stabilizing jet characteristics were analyzied according to their interactions. To simulate the two-phase flow inside the combustion chamber, the Eulerian method was used for gas flow and the Lagrangian method was used for spraying the fuel. For simulating the combustion The purpose of the present study was to investigate the susceptibility of NOx and CO pollutants due to the change of stabilizing jets characteristics in a gas turbine model combustion chamber. The change of stabilizing jet characteristics was analyzed according to their interactions. To simulate the two-phase flow inside the combustion chamber, the Eulerian approach was used for gas flow and the Lagrangian approach was employed for spraying the fuel. For simulating the combustion process inside the combustion chamber, the RANS approach, the Realizable k-ε model for turbulence, Discrete Ordinates Model (DOM) for radiant heat transfer and steady flamelet combustion model were applied. NOx modeling was done by post-processing with a finite rate model. Using a sensitivity analysis, the effects of variations of input variables including diameter, angle and position of the stabilizing jets on output variables were studied. Numerical data were generated by using Design of Experiments (DOE) and full factorial model. The results were inspected by the means of analysis of variance (ANOVA). The results indicated that with considering the interaction among jets characteristics, the trends of pollutants changes could be observed more accurately. Nevertheless, this was not possible without considering the interactions.  The purpose of the present study was to investigate the susceptibility of NOx and CO pollutants due to the change of stabilizing jets characteristics in a gas turbine model combustion chamber. The change of stabilizing jet characteristics was analyzed according to their interactions. To simulate the two-phase flow inside the combustion chamber, the Eulerian approach was used for gas flow and the Lagrangian approach was employed for spraying the fuel. For simulating the combustion process inside the combustion chamber, the RANS approach, the Realizable k-ε model for turbulence, Discrete Ordinates Model (DOM) for radiant heat transfer and steady flamelet combustion model were applied. NOx modeling was done by post-processing with a finite rate model. Using a sensitivity analysis, the effects of variations of input variables including diameter, angle and position of the stabilizing jets on output variables were studied. Numerical data were generated by using Design of Experiments (DOE) and full factorial model. The results were inspected by the means of analysis of variance (ANOVA). The results indicated that with considering the interaction among jets characteristics, the trends of pollutants changes could be observed more accurately. Nevertheless, this was not possible without considering the interactions.  .

Language:
Persian
Published:
Fuel and Combustion, Volume:14 Issue: 2, 2021
Pages:
101 to 121
magiran.com/p2322478  
دانلود و مطالعه متن این مقاله با یکی از روشهای زیر امکان پذیر است:
اشتراک شخصی
با عضویت و پرداخت آنلاین حق اشتراک یک‌ساله به مبلغ 1,390,000ريال می‌توانید 70 عنوان مطلب دانلود کنید!
اشتراک سازمانی
به کتابخانه دانشگاه یا محل کار خود پیشنهاد کنید تا اشتراک سازمانی این پایگاه را برای دسترسی نامحدود همه کاربران به متن مطالب تهیه نمایند!
توجه!
  • حق عضویت دریافتی صرف حمایت از نشریات عضو و نگهداری، تکمیل و توسعه مگیران می‌شود.
  • پرداخت حق اشتراک و دانلود مقالات اجازه بازنشر آن در سایر رسانه‌های چاپی و دیجیتال را به کاربر نمی‌دهد.
In order to view content subscription is required

Personal subscription
Subscribe magiran.com for 70 € euros via PayPal and download 70 articles during a year.
Organization subscription
Please contact us to subscribe your university or library for unlimited access!