Mineralogy of anorthosite veins and host gabbros in the Kal-e-Kafi intrusive body (northeast of Anarak, Isfahan Province, Central Iran)

Message:
Article Type:
Research/Original Article (دارای رتبه معتبر)
Abstract:
Introduction

In the northeastern part of the Isfahan province and 65 km northeast of the Anarak city (Kal-e-Kafi area), an I-type granitoid pluton cross cut the Paleozoic metamorphic rocks and Eocene volcanic rocks. In the contact of this granitoid body with sourrounding rock units, skarn and hornfels have been formed (Ahmadian, 2012; Ranjbar, 2010). The Kal-e-Kafi Eocene intrusive body presents a wide range of mineralogical and petrological compositions, from gabbro to alkali-feldspar granite. Presence of mafic to acidic rocks in this mostly-granitoid body indicates that fractional crystallisation has played an important role during magma evolution. The field and petrographical studies indicate the presence of anorthosite veins within the gabbro section. The mafic and basic parts of this pluton have not been studied yet. The mineralogy and chemistry of rock-forming minerals in the anorthosites and gabbros are the subject of this research study.

Analytical Methods

The mineralogical and petrographical studies have been done by using Olympus BH-2 polarizing microscope in the mineralogy laboratory of the University of Isfahan. EPMA and LA-ICP-MS analyses were used to obtain chemical characteristics of rock-forming minerals. Major-elements composition of minerals were performed by JEOL JXA-8800, WDS microprobe electron analyzer with accelerator voltage of 15 kV, current of 15 nmA, diameter of 3 μm, and a counting time of 40 seconds at the Kanazawa University of Japan. Natural and synthetic minerals and compounds were used as standards. The ZAF program was used for data correction.Trace element values of plagioclases and clinopyroxenes were analyzed by LA-ICP-MS (laser ablation-inductively coupled plasma-mass spectrometry) using an ArF 193 nm Excimer Laser coupled to an Agilent 7500S at the Earth Science Department of the Kanazawa University, Japan. The diameter of the analyzed points was 110 µm at 10 Hz with energy density of 8 J/cm2 per pulse.Mineral abbreviations in tables and photomicrographs are adopted from Whitney and Evans (2010). 

Results and Discussion

The Eocene Kal-e-Kafi pluton includes a wide range of rocks from gabbro to alkali-feldspar granite, which points to an extensive magmatic differntiation. Field relationships indicate presence of at least 4 magmatic phases, and gabbro is the first and oldest phase. The most predominant rock unit in the Kal-e-Kafi intrusive body is granitoid. However,  in the northern parts, the gabbro and anorthosite present substantial exposures. The anorthosites and gabbros are associated with each other in the field. Anorthositic veins with up to 15 cm thickness cut the gabbro.Gabbro is composed of bytownite and anorthite plagioclase (An= 84 – 94 %; some of them have been altered to bytownite, andesine and oligoclase), clinopyroxene (diopside, Mg#= 0.75), orthoclase (Or0.88), apatite, magnetite, and prehnite. Anorthosite rock-forming minerals are anorthite plagioclase (An= 89 – 95 %; some anorthite plagioclase have been altered to bytownite and labradorite), sphene and zircon. The main texture of these rocks are granular, intergranular and poikilitic. Field studies suggest that anorthosites are associated with gabbros which have filled the fractures of gabbros.Very simmilar petrography and chemical composition of plagioclases in the anorthosites and gabbros possibly reveal their cogenetic nature. It seems that the primary magma in the magma chamber, first crystallized the clinopyroxene and plagioclase, which caused formation of gabbros. In the next stage, by occurrence of a tectonic activity, the gabbros have broken and the remaining magma which was rich in plagioclase components, crystallized the anorthosites in the fractures. This reveals that the anorthosites of the study area are the plagioclase rich part of the primary basic magma which have formed the gabbros.According to the field relationships, it is generally believed that anorthosites are differentiates of gabbroic magmas. The studied anorthosite veins and gabbros of the Kal-e-Kafi area are consanguineous. These anorthosites are perhaps generated by the process of collection of plagioclase crystals from a gabbroic magma under the action of gravity and tectonic activity (filter pressing).Pyroxene is one of the common minerals. The chemical composition of this mineral provides valuable information about the nature of magma, H2O content, Oxygen fugacity, type of magmatic series, tectonic setting, as well as temperature and pressure of crystallisation (Schweitzer et al., 1979; Leterrier et al., 1982; D’Antonio and Kristensen, 2005).Chemistry of clinopyroxens within the gabbros of the Kal-e-Kafi  area shows that the parental magma belongs to the sub-alkaline and calc-alkaline magmatic series and these rocks are similar to those of volcanic arcs. The time and place of formation of these plutonic rocks possibly indicate that they are formed by subduction of the Central-East Iranian Microcontinent (CEIM) – confining oceanic crust beneath the CEIM. AcknowledgmentsThe authors thank the University of Isfahan for financial supports.

Language:
Persian
Published:
Journal of Economic Geology, Volume:14 Issue: 2, 2022
Pages:
115 to 141
magiran.com/p2487929  
دانلود و مطالعه متن این مقاله با یکی از روشهای زیر امکان پذیر است:
اشتراک شخصی
با عضویت و پرداخت آنلاین حق اشتراک یک‌ساله به مبلغ 1,390,000ريال می‌توانید 70 عنوان مطلب دانلود کنید!
اشتراک سازمانی
به کتابخانه دانشگاه یا محل کار خود پیشنهاد کنید تا اشتراک سازمانی این پایگاه را برای دسترسی نامحدود همه کاربران به متن مطالب تهیه نمایند!
توجه!
  • حق عضویت دریافتی صرف حمایت از نشریات عضو و نگهداری، تکمیل و توسعه مگیران می‌شود.
  • پرداخت حق اشتراک و دانلود مقالات اجازه بازنشر آن در سایر رسانه‌های چاپی و دیجیتال را به کاربر نمی‌دهد.
In order to view content subscription is required

Personal subscription
Subscribe magiran.com for 70 € euros via PayPal and download 70 articles during a year.
Organization subscription
Please contact us to subscribe your university or library for unlimited access!