فهرست مطالب

زمین شناسی اقتصادی - سال چهاردهم شماره 2 (پیاپی 33، تابستان 1401)

فصلنامه زمین شناسی اقتصادی
سال چهاردهم شماره 2 (پیاپی 33، تابستان 1401)

  • تاریخ انتشار: 1401/07/14
  • تعداد عناوین: 6
|
  • مژده محمدی لیسه رودی، میر علی اصغر مختاری، حسین کوهستانی*، افشین زهدی صفحات 1-28
    کانسار سرب- روی (فلویور- باریم) سرچلشک در 20 کیلومتری جنوب خاور پل سفید (سوادکوه، استان مازندران) قرار دارد. این کانسار به صورت چینه‎ کران درون سنگ آهک های دولومیتی شده سازند الیکا رخ داده و توسط ساختارهای گسلی و حفرات انحلالی کنترل شده است. ضخامت رگه های کانه دار بین 5/0 تا 5/1 متر متغیر است. دگرسانی گرمابی در بخش های کانه دار شامل دگرسانی های دولومیتی، کلسیتی و سیلیسی می باشد. پیریت، گالن و اسفالریت کانه های فلزی اصلی موجود در کانسار سرچلشک هستند که با اندکی کالکوپیریت و تترایدریت همراهی می شوند. فلویوریت و باریت، کانی های غیرفلزی معدنی و کلسیت، دولومیت و کوارتز کانی های باطله هستند. ساخت و بافت کانسنگ در کانسار سرچلشک شامل رگه- رگچه ای، پرکننده فضاهای خالی، برشی، ریتمیک، دانه پراکنده، جانشینی و بازماندی می باشد. مراحل کانه زایی در کانسار سرچلشک به سه مرحله قابل تفکیک است. مرحله اول کانه زایی هم زمان با فرایندهای دیاژنز است. مرحله دوم (مرحله دیرزاد) اصلی ترین مرحله کانه زایی در کانسار سرچلشک است. این مرحله به ترتیب با تشکیل رگه- رگچه های فلویوریت- گالن- اسفالریت- پیریت- کالکوپیریت- تترایدیریت، رگه- رگچه های باریت- پیریت و باریت- کلسیت و در نهایت رگه- رگچه های تاخیری کلسیتی همراه می باشد. در مرحله برون زاد، کانی های اسمیت زونیت، سروزیت، کالکوسیت، کوولیت، آزوریت و گوتیت تشکیل شده اند. عدم روند مشابه عناصر کمیاب و کمیاب خاکی در نمونه های کانه دار و سنگ های آذرین مافیک، بیانگر عدم ارتباط ژنتیکی کانه زایی با ماگماتیسم مافیک منطقه بوده و خاستگاه گرمابی آذرینزاد کانسار سرچلشک را منتفی می سازد. ویژگی های زمین شناسی، کانه زایی، مجموعه کانی شناسی و ساخت و بافت کانسنگ در کانسار سرچلشک شباهت زیادی با کانسارهای سرب و روی تیپ دره می سی‎سی‎پی (زیررده غنی از فلویور و باریم) دارد.
    کلیدواژگان: کانه زایی سرب- روی (فلوئور- باریم)، سازند الیکا، سرچلشک، سوادکوه، مازندران
  • بهزاد مهرابی، نفیسه چقانه*، ابراهیم طالع فاضل صفحات 29-64

    کانسار سرب و روی چاه میله شامل سه ذخیره مزرعه دراز، کوه میله و سیلچو در فاصله 30 کیلومتری شمال شرق انارک (ایران مرکزی)، واقع شده است. واحد مرمر دولومیتی کمپلکس چاه گربه با سن تریاس میانی، سنگ میزبان اصلی کانسار بوده که ماده معدنی با ماهیت چینه کران و بافت های برشی، شکافه پرکن، جانشینی و افشان در آن شکل گرفته است. مراحل رخداد ذخیره به ترتیب شامل: 1) پیش از کانه زایی با حضور پیریت های ریزبلور افشان، 2) کانه زایی گرمابی اصلی با حضور گالن، اسفالریت و کالکوپیریت و 3) مرحله پس از کانه زایی شامل سولفیدهای ثانویه و  کانی های غیرسولفیدی است. کوارتز، دولومیت، کلسیت و باریت مهم ترین کانی های باطله همراه کانسنگ هستند. میان بارهای سیال اولیه دوفازی آبگین غنی از مایع در میزبان دولومیت دارای دمای همگن شدن بین 93 تا 167 درجه سانتی گراد و شوری  15/14 تا 97/20 درصد وزنی معادل نمک طعام، در میزبان کلسیت دارای دمای همگن شدن بین 98 تا 147 درجه سانتی گراد و شوری 02/7 تا 72/13 درصد وزنی معادل نمک طعام و در میزبان کوارتز دارای دمای همگن شدن بین 81 تا 158 درجه سانتی گراد و شوری 94/13 تا 2/22 درصد وزنی معادل نمک طعام هستند. اختلاط و رقیق شدگی شورابه های حوضه ای با سیالات جوی کم شور احتمالا به عنوان فرایندی موثر در ته نشینی فلزهاست. رخداد دگرسانی سیلیسی همواره به عنوان نشانه ای از تغییرات دمایی ناشی از رقیق شدگی محسوب می شود که در کانسار چاه میله  قابل مشاهده است. یافته های زمین شناسی، بافتی و کانی شناسی و داده های میان بارهای سیال نشان دهنده کانی سازی نوع دره می سی سی پی در کانسار چاه میله است.

    کلیدواژگان: دگرسانی دولومیتی، سنگ میزبان کربناته، نوع دره می سی سی پی، سرب و روی، ایران مرکزی، انارک، چاه میله
  • فریبا طایفی*، بهزاد مهرابی، مجید قاسمی سیانی صفحات 65-91

    محدوده کانه زایی احمدآباد در شمال شرق استان سمنان و در حد فاصل زون های ساختاری البرز و ایران مرکزی واقع شده است. کانی سازی در کانسار به صورت اپی ژنتیک در بخش های کم عمق و سطحی کانسار با بافت های پر کننده فضای خالی، رگه- رگچه ای، توده ای و افشان در سنگ های میزبان نفوذی با ماهیت مونزونیت و مونزودیوریت و به مقدار کمتر گرانودیوریت و گرانیت و در واحدهای آتشفشانی آندزیت، تراکی آندزیت و داسیت رخ داده است. کانه زایی شامل انواع اکسیدی (هماتیت)، سولفیدی (پیریت و کالکوپیریت) و اکسی- هیدروکسیدی (گوتیت و لیمونیت) است و باریت، کلسیت و کوارتز باطله های اصلی در کانسار هستند. بر اساس بررسی های ژیوشیمیایی روی کانسنگ آهن، نمونه ها به دو گروه کم عیار و عیار متوسط دسته بندی می شود. بر اساس مطالعات میکروترمومتری، دمای همگن شدن و شوری میان بارهای سیال در کوارتز به ترتیب برابر 194 تا 370 درجه سانتی گراد و 74/1 تا 07/13 درصد وزنی معادل نمک طعام و در کانی باریت 115 تا 256 درجه سانتی گراد و 62/3 تا 45/19 درصد وزنی معادل نمک طعام است. بر اساس این مطالعات، سردشدن و رقیق شدگی سطحی سیال مسیول کانه زا در اثر اختلاط با سیال جوی عامل اصلی کانی سازی در کانسار احمدآباد است. توده های نفوذی نیمه عمیق ضمن صعود به مناطق کم عمق پوسته زمین، درون سنگ های آتشفشانی در بخش های گسلی و شکستگی ها جای گرفته اند؛ و در نتیجه کاهش دما، فشار و افزایش فوگاسیته اکسیژن، در بخش های سطحی منجر به کانی سازی گرمابی در سنگ های میزبان آتشفشانی و نفوذی شده است. بر این اساس می توان کانه زایی در کانسار احمدآباد را از نوع کانی سازی های گرمابی دانست.

    کلیدواژگان: توده نفوذی نیمه عمیق، هماتیت، اختلاط سیالات، آهن گرمابی، البرز و ایران مرکزی، احمدآباد
  • حمید حافظی مقدس، سید مسعود همام* صفحات 93-113

    منطقه بوژان در شمال شرق ایران و در 22 کیلومتری شمال شرق نیشابور واقع شده است. این محدوده شامل برون زدهایی از واحدهای رسوبی پالیوزوییک (سیلت، کنگلومرا، آهک ماسه ای) و سنگ های آتشفشانی بازالت، آندزیتی بازالتی، آندزیت، تراکیت و آذرآواری (سیلورین) است. بافت غالب واحدهای آتشفشانی پورفیری، گلومروپورفیری و جریانی بوده و شامل کانی های اصلی پلاژیوکلاز، پیروکسن و به مقدار کم الیوین و کانی فرعی آپاتیت هستند. بازالت های بوژان سرشت آلکالن با گرایش سدیک دارند. این سنگ ها دارای ویژگی های بازالت های درون صفحه ای (مانند نبود آنومالی منفی عناصر Nb، P و Ti و دارا بودن روند کاهشی در نمودار چند عنصری بهنجار شده به ترکیب گوشته اولیه) هستند. همچنین بر اساس نمودارهای گوناگون برای محیط زمین ساختی، در محدوده بازالت های درون صفحه ای قرار می گیرند. ماگمای اولیه بر اساس نسبت های Nb/Zr، Ce/Zr، La/Zr و Rb/Zr شواهدی از آغشتگی پوسته ای نشان نمی دهد. سنگ های بوژان در طول چرخه ای از کافت درون قاره در هنگام باز شدگی پالیوتتیس در اردویسین تا سیلورین شکل گرفته اند.

    کلیدواژگان: کانی شناسی، زمین شیمی، بازالت، آلکالن، بوژان، بینالود
  • حنان سلیم، قدرت ترابی*، نرگس نصوحیان صفحات 115-141

    منطقه کالکافی در حدود 65 کیلومتری شمال شرق شهر انارک (بخش شمال شرقی استان اصفهان) واقع شده است. در این منطقه توده نفوذی کالکافی با سن ایوسن بالایی، دگرگونه های پالیوزوییک انارک، سنگ آهک های کرتاسه و سنگ های آتشفشانی ایوسن زیرین و میانی را قطع کرده است. این توده نفوذی طیف گسترده ای از سنگ ها از گابرو تا آلکالی فلدسپار گرانیت را شامل می شود که بیانگر رخداد تفریق ماگمایی بسیار گسترده است. آنورتوزیت ها به صورت رگه هایی در درون گابروها دیده می شوند که ضخامت این رگه ها متغیر بوده و تا حدود 15 سانتی متر هم می رسد. گابروها از پلاژیوکلازهای نوع آنورتیت (%94-84 An=) که برخی از آنها به بیتونیت، آندزین و الیگوکلاز تغییر یافته اند، کلینوپیروکسن از نوع دیوپسید (75/0=Mg#)، ارتوکلاز (Or0.88)، آپاتیت، مگنتیت و پرهنیت تشکیل شده است. آنورتوزیت ها نیز متشکل از کانی های پلاژیوکلاز از نوع آنورتیت (%95-89 An=؛ که گاهی این پلاژیوکلازها به بیتونیت و لابرادوریت تغییر یافته اند)، اسفن و زیرکن هستند. بافت های اصلی این سنگ ها گرانولار، اینترگرانولار و پویی کیلیتیک است. بررسی های صحرایی نشان می دهد که آنورتوزیت ها با گابروها همراه بوده و شکستگی های گابروها را پر کرده اند. بررسی ترکیب شیمیایی پلاژیوکلازهای درون گابروها و پلاژیوکلازهای موجود در آنورتوزیت ها بیانگر شباهت بسیار زیاد این کانی ها از نظر محتوای عناصر اصلی و کمیاب بوده و بیانگر ارتباط ژنتیکی این سنگ هاست. این ویژگی نشان می دهد که آنورتوزیت های منطقه کالکافی در حقیقت ادامه تبلور بخش غنی از پلاژیوکلاز ماگمای گابرویی اولیه است.

    کلیدواژگان: پلاژیوکلاز، کلینوپیروکسن، آنورتوزیت، گابرو، ائوسن، کالکافی، ایران مرکزی
  • فرهاد پیرمحمدی علیشاه*، مهدی محمدرضایی، احمد جهانگیری صفحات 143-163

    توده گرانیتی هریس از لحاظ زمین شناسی بخشی از زون ساختمانی البرز غربی- آذربایجان محسوب می شود. این توده سازند کهر را قطع کرده و خود با رسوب های پرمین با دگرشیبی آذرین پی پوشیده می شود. ترکیب سنگ شناسی توده مورد بررسی، آلکالی فلدسپار گرانیت  است و بافت غالب و عمده سنگ ها دانه ای و پرتیتی است. کانی های اصلی این سنگ ها شامل کوارتز، فلدسپار پتاسیم، پلاژیوکلاز و کانی های فرعی شامل بیوتیت، آمفیبول، پیروکسن، آپاتیت، اسفن و زیرکن است. بی هنجاری منفی Eu در نمودار REE نشان دهنده حضور پلاژیوکلاز در سنگ خاستگاه و یا جدایش پلاژیوکلاز در طول تکامل ماگمای تشکیل دهنده این سنگ هاست. بررسی های زمین شیمیایی نشان می دهد که گرانیت های مورد بررسی دارای ماهیت نوع A هستند و به دلیل فقیر بودن از Nb، در گستره A2 قرار می گیرند. غنی شدگی نسبی از LILEs به ویژه Rb و Th و فقیرشدگی از عناصر Nb، Sr، Eu، Ba و Ti نشان دهنده خاستگاه پوسته ای آن است که در یک محیط کششی احتمالا مرتبط با ریفت جای گیری کرده اند. بررسی های انجام شده خاستگاه ذوب بخشی پوسته زیرین با ترکیب تونالیتی- گرانودیوریتی را برای این گرانیت ها نشان می دهد.

    کلیدواژگان: هریس، گرانیت، سنگ شناسی، ماگماتیسم، ریفت درون قاره ای
|
  • Mozhdeh Mohammadi Lisehroudi, Mir Ali Asghar Mokhtari, Hossein Kouhestani *, Afshin Zohdi Pages 1-28
    IntroductionThere are several carbonate-hosted Pb–Zn (F–Ba) deposits in the central Alborz zone hosted by upper part of Elika Formation. From an economic point of view, the most important deposits discovered to date are Sheshroudbar, Pachi Miana, Kamarposht and Era. It makes the central Alborz zone as one of the most important Pb–Zn (F–Ba) districts in Iran. In this district, Elika Formation is restricted by NE–SW-trending reverse faults, and thrusted over the Shemshak Formation. The main orebodies occurred in open spaces which formed due to angles between normal and reverse faults in the carbonate rocks of Elika Formation (Tabasi, 1997). Some of these deposits have been studied, and various models such as syn-diagenesis to epigenetic are presented for ore genesis (Alirezaei, 1989; Gorjizad, 1996; Rastad and Shariatmadar, 2002; Rajabi et al., 2013; Vahabzadeh et al., 2014; Nabiloo et al., 2018).Sarcheleshk is an abandoned mine of Pb–Zn (F–Ba) mineralization in the central Alborz zone. Except for small-scale geological maps of the area, i.e., 1:100,000 geological map of Pol-e-Sefid (Vahdati Daneshmand and Karimi, 2004) and Semnan (Nabavi, 1988), previous studies of Pb–Zn (F–Ba) mineralization at Sarcheleshk was limited and include Mohammadi Lisehroudi (2019). In this contribution, we provide the first detailed geological, mineralogical and geochemical studies in the Sarcheleshk deposit to reveal more details of the type and genetic model of ore formation. Materials and methodsDetailed field work has been carried out at different scales in the Sarcheleshk area. A total of 60 samples were collected from various parts of orebodies, host carbonate and mafic igneous rocks. The samples prepared for thin (n=32) and polished-thin (n=12) sections in the laboratory of University of Zanjan, Zanjan, Iran. Representative 8 samples from the ore zone, 1 sample from barren dolomitic limestone and 3 samples from mafic igneous rocks, were analyzed for major, trace and rare earth elements using XRF and ICP–MS in the Zarazma Analytical Laboratories, Tehran, Iran. Discussion and conclusionThe Sarcheleshk Pb–Zn (F–Ba) deposit is located 20 km southwest of Pol-e-Sefid, Mazandaran province. The most important rock units exposed in this area include early to middle Triassic dolomitic limestone (Elika Fm.), late Triassic gypsum, dolomitic limestone and marl (Paland Fm.), late Triassic mafic igneous rocks, late Triassic to early Jurassic shale, siltstone and sandstone (Shemshak Fm.), middle Jurassic ammonite-bearing marl, calcareous marl and marly limestone (Dalichay Fm.), late Jurassic cherty limestone and dolomitic limestone (Lar Fm.), and early Eocene Alveolina–Nummulitic limestone (Ziarat Fm.).Mineralization at Sarcheleshk occurs as strata-bound orebodies hosted by dolomitic limestone of Elika Formation, and controlled structurally by faults, fractures and dissolution collapse breccias. The ore veins have a varying width from 0.5 to 1.5 m. Detailed field geology and petrographic studies indicate that wall-rock alterations developed at the Sarcheleshk deposit include dolomitization, silicification, and calcitization. The ores at Sarcheleshk are dominated by galena, sphalerite, pyrite, fluorite, and barite, with lesser, chalcopyrite, and tetrahedrite, all of which are hosted by a dolomite, calcite, and quartz gangue assemblage. The ore minerals show vein-veinlets, open space filling, brecciated, rhythmic, disseminated, replacement, and relict textures. The mineralization process at Sarcheleshk can be divided into three stages. Stage 1 is diagenesis stage represented by rhythmic texture of fluorite, galena, sphalerite, and calcite bands. Stage 2 (epigenetic stage), volumetrically most important, is marked by fluorite-sphalerite-galena-pyrite-chalcopyrite, barite-pyrite and barite-calcite, and late stage calcite veins and veinlets. Stage 3 is the supergene mineral assemblages consisting of smithsonite, cerussite, chalcocite, covellite, azurite, and goethite. The ore samples and mafic igneous rocks show different Chondrite-normalized trace and REE patterns, indicating that they are genetically unconnected. It is declined syn-sedimentary and/or hydrothermal igneous origins for the Sarcheleshk deposit, and specify that basinal brines may have played a role in Pb–Zn (F–Ba) mineralization at Sarcheleshk deposit.Our data suggests that Sarcheleshk deposit is a F–Ba-rich MVT deposit and is comparable with other Pb–Zn (F–Ba) deposits of central Alborz zone.
    Keywords: Pb–Zn (F–Ba) mineralization, Elika Formation, Sarcheleshk, Savadkouh, Mazandaran
  • Behzad Mehrabi, Nafiseh Chaghaneh *, Ebrahim Tale fazel Pages 29-64
    Introduction

    The Himalayan-Tibetan and Zagros Mountain ranges which are the youngest and most extensive continental-collision orogens in Tethyan domain host many important sediment-hosted Pb-Zn deposits, including the world-class Jinding, Huoshaoyun, Mehdiabad, and Angouran deposits (Reynolds and Large, 2010; Rajabi et al., 2012; Rajabi et al., 2015; Hou and Zhang, 2015; Song et al., 2017). More than 300 sediment-hosted Pb-Zn deposits and occurrences have been identified in Iran (Rajabi et al., 2013). Cretaceous and Triassic carbonate successions are the most common host rocks for these deposits, which are largely distributed in both the Malayer-Esfahan metallogenic belt (MEMB) and the Yazd-Anarak metallogenic belt (YAMB) (Rajabi et al., 2012). The YAMB is located at the Yazd Block, northern margin of the Central Iranian Plate. Several Pb-Zn deposits and occurrences such as Mehdiabad, Nakhlak, Hovz-e-Sefid, Darreh-Zanjir, Mansurabad, Chah-Kharboze and Chah- Mileh have been identified distinguished at YAMB. The Chah- Mileh deposit is in 30 km northeast Anarak, 220 km northeast of Isfahan, YAMB. The Chah- Mileh Pb-Zn district is located in the Anarak Metamorphic Complex (AMC). There are three Pb-Zn deposits that have been recognized at the Chah- Mileh district, including Kuh-e Mileh, Mazra-e Deraz, and Seilacho. In this paper, we investigate geology, texture, mineralogy, alterations, fluid inclusions and genesis of the Chah- Mileh Pb-Zn deposit. The present research study provides more insight into understanding of geology and mineralization conditions in the study area with an implication for future exploration. 

    Materials and methods

    A total of 120 samples were collected from the host rocks and ore deposit. They were studied by a transmitted/reflected polarizing microscope, X-ray Diffraction (XRD) and Scanning Electron Microscope-Energy Dispersive X-ray analyzer (SEM-EDS). Thin sections were stained  to differentiate calcite and dolomite according to the method of Dickson (1966). Fluid inclusion microthermometry was performed using a Linkam THMS600 heating-freezing stage (-190 °C to +600 °C) mounted on a ZEISS Axioplan2 microscope at the Kharazmi University (Tehran). Fluid salinity (wt.% NaCl eq.) and density (g/cm3) were calculated using the FLINCOR v.1.4 (Brown, 1989) and FLUIDS (Bakker, 2012). 

    Results and discussion

    The Chah- Mileh Pb-Zn is a stratabound and epigenetic deposit hosted in dolomitic marble of the Chah-Gorbeh Complex with Middle Triassic age. Mineralization is composed of sulfide minerals (e.g., galena, sphalerite, chalcopyrite and minor pyrite) and non-sulfide minerals (e.g., cerussite, mimetite, wulfenite, litharge, hemimorphite, smithsonite, malachite, hematite, goethite). The gangue minerals are mainly composed of quartz, dolomite, calcite, and barite. Silicification and dolomitization are the two main types of hydrothermal alterations. Three mineralization stages were recognized in the Chah-Mile deposit: 1) pre mineralization stage characterized by fine-grained disseminated pyrite, 2) main hydrothermal stage characterized by galena, sphalerite and chalcopyrite and 3) post-ore mineralization consisting of secondary sulfides and non-sulfide. Four types of fluid inclusions including two-phase liquid-rich (LV), two-phase vapor-rich (VL), monophase liquid (L), and monophase vapor (V) were observed in the dolomite, quartz and calcite. Microthermometric measurements show that ore minerals were precipitated from low-temperature (81 to 167 °C) and moderate salinity fluids (7.02-22.2 wt.% NaCl eq.). Basinal hydrothermal fluids were responsible for ore mineralization at the Chah- Mileh deposit. Ore mineralization at the Chah- Mileh deposit has been formed as a result of fluid mixing. The formation of large siliceous zones in an area is a sign of hydrothermal fluid rising to the surface and mixing and diluting with low-temperature meteoric waters. Considering all the geological evidence, mineralization style, orebody texture and structure, alterations and fluid inclusion microthermometry, it may be inferred that the Chah- Mileh deposit is similar to the Mississippi Valley-type deposits.

    Keywords: Dolomitic alteration, Carbonate-hosted, Mississippi Valley-type, Lead-Zinc, Central Iran, Anarak, Chah-‌Mileh
  • Fariba Tayefi *, Behzad Mehrabi, Majid Ghasemi Siani Pages 65-91

    Veins and stockwork hydrothermal iron ore are formed by hydrothermal fluids at various depth, from shallow to deep environments (Guilbert and Park, 1997). Ahmadabad deposit is located in 30 km northeast of the Semnan province, between the Alborz and Central Iran structural zones. According to previous studies in the Ahmadabad ore deposit (Haji Babaei and Ganji, 2018; Ketabforoush, 2016), there are major uncertainties about the origin of mineralization and hydrothermal process. In previous study based on fluid inclusions data, Ahmadabad hematite barite ore deposit is considered as low-temperature hydrothermal barite ore deposit and also Ahmadabad barite iron oxide ore deposit is also considered as a veins-type hydrothermal-magmatic ore deposit (Haji Babaei and Ganji, 2018). Ketabforoush (2016) based on lithological, mineralogical and alteration assemblage characteristics of Ahmadabad iron ore mineralization, consider it as an Iron Oxide-Cu-Au (IOCG) type hydrothermal mineralization. This study attempts to use mineralogy, geochemistry and microthermometry of fluid inclusions data in quartz and barite for investigating the genesis of Fe-Cu-Au mineralization and possible style of mineralization at the Ahmadabad deposit. Material and methodsDuring the field work, 54 samples were collected from the host rocks and alteration and mineralization zones. For petrography, mineralogy and paragenetic sequence studies, 48 thin-polished sections were prepared and studied by ZEISS Axioplan2 polarized microscope at Kharazmi University Tehran branch. After ore petrography 10 suitable ore samples were selected for chemical analysis. Preparation, crushing and pulverizing of the samples were carried out in Kharazmi University and samples were analyzed in the Zarazma and Iranian Mineral Processing Research Center (IMPRC) labs. for major, minor and rare earth elements by using WD-XRF and ICP-MS methods. Geochemical analyses results are presented in Tables 1 and 2. Microthermometric analyses were carried out on 3 doubly polished thin section from quartz and barite minerals using a Linkam THMS 600 freezing-heating stage, mounted on a ZEISS Axioplan2 research microscope at the IMPRC. Discussion The formation and associated process of iron ore deposition has been much debated and discussed, with the focus on hydrothermal and magmatic origin (Naslund et al., 2000). In Ahmadabad deposit, it seems that monzonite and monzodiorite subvolcanic intrusions has been emplaced through a volcanic sequence. During magma emplacement and crystallization, magmatic fluids due to lower density, rising to the upper part of the intrusions and penetrated into the volcanic host rocks causing vein-type iron mineralization. On the basis of mineralogical and microthermometric studies of fluid inclusions, the mineralizing fluid was possibly of magmatic origin; cooled and diluted by mixing with meteoritic fluids. Temperature and pressure drop following the migration of the magmatic fluid to the shallow depths may changes the nature of mineralizing fluids from reduced to oxidant state and deposition of iron as hematite after sulfide (pyrite and chalcopyrite) and sulfate (barite) precipitation. Salinity and homogenization temperature of fluid inclusions show that high temperature-salinity fluid mixed with low temperature-salinity fluid and by decrease in temperature and salinity, followed by cooling and dilution, provided the favorable condition for iron oxide deposition. Based on current studies, Ahmadabad deposit formed in following stages:- Intrusion’s emplacement in the shallower depth, caused migration and circulation of mineralized fluid in fractures and faults act as fluid channeling conduits.- Circulation of these fluids through fractured systems may also cause some metal leaching from the wall rocks.- Moderate to high temperature and salinity magmatic fluid, while approaching the shallow depth were mixed with meteoric fluids and by cooling and dilution process, and possibly transition from the reduction-oxidation boundary, ore bearing fluid nature changed resulted in hematite deposition after sulfide and sulfate phases. ResultsAhmadabad iron ores mineralization based on field geology, mineralogy, geochemistry and microthermometry data is similar to epigenetic deposits formed by magmatic-meteoric fluids due to fluid mixing. Mineralization in the Ahmadabad deposit be divided into two stages of mineralization: 1) primary hydrothermal mineralization stage (hypogene), and 2) secondary stage (supergene). The main iron ore mineralization in Ahmadabad is hematite (specularite) which is mainly formed later than sulphides including pyrite and chalcopyrite, as open space-filling, vein-veinlet, massive and disseminated style of deposition. Barite, calcite and quartz are the main gangue minerals, though in some place’s barite has economic potential. Based on field data and mineralogical studies, the subvolcanic intrusions of the Early Eocene age, after emplacement within the volcanic units controlled by fault and fracture zones, have caused extensive low-grade alterations and limited mineralization in intrusion and volcanic host rocks. Microthermometric studies of fluid inclusions show that the best possible model for formation of the Ahmadabad ore deposit, is mixing of hot and high-salinity magmatic fluid with cold and low-salinity meteoric water.Although iron ore grade changes greatly with variation in the silica contents, high grade Fe mineralization mainly occurred in the fault and fractured zones away from widespread intensive silicification which is mainly associated with Cu±Au mineralization. These features are the key exploration criteria for future exploration program in the region.

    Keywords: Subvolcanic intrusion, Hematite, Mixing fluids, Hydrothermal iron, Alborz, Central Iran, Ahmadabad
  • Hamid Hafezi Moghadas, Seyed Masoud Homam * Pages 93-113
    Introduction

    Geological events from Precambrian to Quaternary have played a very important role in producing magmatic rocks in Iran. However, magmatic rocks with the ages of Precambrian, early Cambrian and specially Tertiary are much more frequent (Aghanabati, 2004). In contrast, magmatism and plutonism in Iran with Paleozoic age considered to be very rare. Volcanic rocks with the age of Ordovician-Silurian have been reported from some restricted areas of Iran such as Soltan Meydan near Shahroud (Derakhshi and Ghasemi, 2015) and Abyaneh near Kashan (Ayati et al., 2011). Volcanic and volcanoclastic rocks from the North of Neyshabour extend with a linear trend from Garineh to Bojan. In the lack of geochronological data and on the basis of stratigraphical evidence, the age of Ordovician-Silurian has been suggested for these rocks. A detailed study on petrology and geochemistry of north Neyshabour volcanic and volcanoclastic rocks can help us reconstruct the evolution of Iran bed rock during the early Paleozoic Era. The aim of this study includes petrology and major and trace element geochemistry to present critical keys to obtain some knowledge about tectono-magmatic situation of Iran during the early Paleozoic Era, especially in the Binaloud structural zone. 

    Material and methods

    This study was carried out in two parts including field and laboratory works. Sampling and structural studies were carried out during field work. The petrographic studies were performed on 45thin and polished thin sections. Geological map for the study area was also prepared. Whole-rock chemical analysis of 7 samples for major, minor, trace and rare earth elements were performed at the ACME Laboratory in Canada, by using the 4AB1 method using ICP-MS and the major oxides of six basalt samples were analyzed by X-ray fluorescence (XRF) at the Zarazma Laboratory.

    Results and discussion

    The study area is located in the Northeast of Iran 15 Km NE of Neyshabour city and 7 Km NE of Bojan village. The Bojan area consists of Paleozoic sedimentary rocks (Limestone, sandstone, Dolomite) and volcanic-volcanoclastic rocks (basalts, andesit-basalts, andesite, trachyte, agglomerate and tuff). Petroghraphic studies showed that major minerals in Bojan basalts are plagioclase, pyroxene and olivine and secondary and accessory minerals are apatite, ilmenite, magnetite, chlorite, calcite and epidote. The texture of the Basalts is porphyritic, glomeroporphyric and trachytic.Based on geochemical data, the TAS diagram shows that the Basalts fall within the fields of tephrite to trachyte and belong to alkaline series with sodic nature. MgO# is varied from 20.13 to 38.62 which can be interpreted on the basis of crystal differentiation in magma chamber. The low value of compatible elements such as nickel and descending trend of MgO versus SiO2 can clearly be explained in terms of olivine fractionation. In addition, the nearly constant ratios of incompatible elements such as Nb/Zr, Ce/Zr, La/Zr, and Rb/Zr in rocks with different SiO2 content can reveal the importance of primitive magma differentiation. In contrast, these ratios suggest that crustal assimilation plays no important role in changing primitive magma composition. Enrichment of LREE compared with HREE in the studied basalts can be explained by low degrees of partial melting. Chondrite-normalized REE patterns for basalts from the Bojan area show a very similar pattern with those from transitional - mildly alkalic basalts from the Eastern branch of the East African Rift. Spider diagram patterns for Bojan basalts normalized according to Thompson (1982) and Sun and Mc Donough (1989) show a clear enrichment of all trace elements compared with those from chondorite and primitive mantel. On the basis of tectonic setting discrimination diagrams the study area basalts fall in within plate alkaline domain. According to petrographical and geochemical data of Bojan volcanic rocks it can be concluded that magmatism in the Bojan area has been formed as a result of a cycle of within plate rifting when the Palaeo-Tethys Ocean started to open during the Ordovician-Silurian time. AcknowledgmentsThe Research Foundation of Ferdowsi university of Mashhad, Iran, supported this study (Project 3/50860, 08/09/ 2019). We thank the university authorities for funding. The authors also would like to thank Professor Gültekin Topuz at the Eurasian Institute of Earth Sciences, Istanbul Technical University (Turkey) for his kind support and valuable comments.

    Keywords: Mineralogy, Geochemistry, Basalt, alkaline, Bojan, Binaloud
  • Hanan Salim, Ghodrat Torabi *, Nargess Nosouhian Pages 115-141
    Introduction

    In the northeastern part of the Isfahan province and 65 km northeast of the Anarak city (Kal-e-Kafi area), an I-type granitoid pluton cross cut the Paleozoic metamorphic rocks and Eocene volcanic rocks. In the contact of this granitoid body with sourrounding rock units, skarn and hornfels have been formed (Ahmadian, 2012; Ranjbar, 2010). The Kal-e-Kafi Eocene intrusive body presents a wide range of mineralogical and petrological compositions, from gabbro to alkali-feldspar granite. Presence of mafic to acidic rocks in this mostly-granitoid body indicates that fractional crystallisation has played an important role during magma evolution. The field and petrographical studies indicate the presence of anorthosite veins within the gabbro section. The mafic and basic parts of this pluton have not been studied yet. The mineralogy and chemistry of rock-forming minerals in the anorthosites and gabbros are the subject of this research study.

    Analytical Methods

    The mineralogical and petrographical studies have been done by using Olympus BH-2 polarizing microscope in the mineralogy laboratory of the University of Isfahan. EPMA and LA-ICP-MS analyses were used to obtain chemical characteristics of rock-forming minerals. Major-elements composition of minerals were performed by JEOL JXA-8800, WDS microprobe electron analyzer with accelerator voltage of 15 kV, current of 15 nmA, diameter of 3 μm, and a counting time of 40 seconds at the Kanazawa University of Japan. Natural and synthetic minerals and compounds were used as standards. The ZAF program was used for data correction.Trace element values of plagioclases and clinopyroxenes were analyzed by LA-ICP-MS (laser ablation-inductively coupled plasma-mass spectrometry) using an ArF 193 nm Excimer Laser coupled to an Agilent 7500S at the Earth Science Department of the Kanazawa University, Japan. The diameter of the analyzed points was 110 µm at 10 Hz with energy density of 8 J/cm2 per pulse.Mineral abbreviations in tables and photomicrographs are adopted from Whitney and Evans (2010). 

    Results and Discussion

    The Eocene Kal-e-Kafi pluton includes a wide range of rocks from gabbro to alkali-feldspar granite, which points to an extensive magmatic differntiation. Field relationships indicate presence of at least 4 magmatic phases, and gabbro is the first and oldest phase. The most predominant rock unit in the Kal-e-Kafi intrusive body is granitoid. However,  in the northern parts, the gabbro and anorthosite present substantial exposures. The anorthosites and gabbros are associated with each other in the field. Anorthositic veins with up to 15 cm thickness cut the gabbro.Gabbro is composed of bytownite and anorthite plagioclase (An= 84 – 94 %; some of them have been altered to bytownite, andesine and oligoclase), clinopyroxene (diopside, Mg#= 0.75), orthoclase (Or0.88), apatite, magnetite, and prehnite. Anorthosite rock-forming minerals are anorthite plagioclase (An= 89 – 95 %; some anorthite plagioclase have been altered to bytownite and labradorite), sphene and zircon. The main texture of these rocks are granular, intergranular and poikilitic. Field studies suggest that anorthosites are associated with gabbros which have filled the fractures of gabbros.Very simmilar petrography and chemical composition of plagioclases in the anorthosites and gabbros possibly reveal their cogenetic nature. It seems that the primary magma in the magma chamber, first crystallized the clinopyroxene and plagioclase, which caused formation of gabbros. In the next stage, by occurrence of a tectonic activity, the gabbros have broken and the remaining magma which was rich in plagioclase components, crystallized the anorthosites in the fractures. This reveals that the anorthosites of the study area are the plagioclase rich part of the primary basic magma which have formed the gabbros.According to the field relationships, it is generally believed that anorthosites are differentiates of gabbroic magmas. The studied anorthosite veins and gabbros of the Kal-e-Kafi area are consanguineous. These anorthosites are perhaps generated by the process of collection of plagioclase crystals from a gabbroic magma under the action of gravity and tectonic activity (filter pressing).Pyroxene is one of the common minerals. The chemical composition of this mineral provides valuable information about the nature of magma, H2O content, Oxygen fugacity, type of magmatic series, tectonic setting, as well as temperature and pressure of crystallisation (Schweitzer et al., 1979; Leterrier et al., 1982; D’Antonio and Kristensen, 2005).Chemistry of clinopyroxens within the gabbros of the Kal-e-Kafi  area shows that the parental magma belongs to the sub-alkaline and calc-alkaline magmatic series and these rocks are similar to those of volcanic arcs. The time and place of formation of these plutonic rocks possibly indicate that they are formed by subduction of the Central-East Iranian Microcontinent (CEIM) – confining oceanic crust beneath the CEIM. AcknowledgmentsThe authors thank the University of Isfahan for financial supports.

    Keywords: Plagioclase, Clinopyroxene, Anorthosite, Gabbro, eocene, Kal-e-kafi, Central Iran
  • Farhad Pirmohammadi Alishah *, Mehdi Mohammadrezaei, Ahmad Jahangiri Pages 143-163
    Introduction

    Granites are interesting because of their abundance in the continental crust and the presentation of valuable information from the depths of the earth and their close dependence on tectonic and geodynamic processes (Bonin, 2007). The Mishu granites are exposed over an area around 50 km2 in the northwestern Iran near the city of Tabriz (Figures 1 and Figures 2). The Mishu granites have been injected into the Neoproterozoic shales, carbonates, sandstones, and tuffs of the Kahar Formation (Asadian et al. 1994). Mafic and ultramafic rocks (gabbro, basalt, and dunite) occur at the north and northeast of the Mishu granites and seem to be the host of granites. Field observations show a magmatic injection of the Mishu granites into the mafic-ultramafic rocks. There are several outcrops of granite rocks in the northwest Iran, including Takab–Zanjan, Khoy, Soursat, and Mishu. Among these outcrops, there are no systematic geochemical and geochronological studies on the Mishu rocks. In this paper, we investigate the genetic relationship between different parts of the mass, origin of the constructive magma and the tectonic position of this intrusion with the help of the results of field studies governing different parts of the Harris intrusion mass, petrography and geochemical analysis of the main and rare elements.

    Material and methods

    A total of 150 samples were collected from Mishu granites. Polished thin sections were prepared from all the collected samples.
    Based on petrographic observations, 20 samples with minimal effects of hydrothermal alteration were selected for whole-rock geochemical analysis (Table 1). These selected samples were analyzed for major and trace elements at the ACME Laboratory (in the ACME Analytical Laboratories of Vancouver, Canada). Analytical errors for major elements are assessed as <1% of the determined concentrations. Results are reported in Supplementary Table 1. Major element oxide analysis was performed by Lithium Borate Fusion and Inductively Paired Plasma Emission Spectrometer (ICP-ES). In this method, the number of oxides of the main elements is measured based on weight percentage. The measurement accuracy for the main elements in this method was 0.01 Wt.%. Also, in this method, the number of volatiles in the form of L.O.I. was measured with an accuracy of 0.01%. The induced coupled plasma mass spectrometer (ICP-MS) method was used to measure the amount of trace and rare elements. The detection threshold of these elements, depending on the element, varied from close to 0.01 ppm to 10 ppm.

    Results

    Harris granite rocks are in the northwestern Iran and about 20 km west of Shabestar city. This mass is composed of alkaline feldspar granite. The most abundant texture seen in these rocks is micro-pertite and myrmicite and based on lithographic and geochemical properties, they belong to A2-type granites. The samples are meta-aluminous to per-aluminous is based on the saturation index of alumina. In general, the studied granites have higher amounts of Na2O + K2O, Fe / Mg, Ga / Al, HFSEs and lower amounts of CaO, Sr and Eu. Also, the content of REEs of the samples in the normalized graph concerning chondrite shows a negative Eu anomaly. In other words, it is likely that A-type alkaline granites after collision have been created in this area following collision events and during their placement the tensile structure is predominant. Normalized multi-element diagrams as well as high Rb indicate that the continental crust has played a significant role in the formation of the Harris granite producing magma, possibly due to the melting of the lower crust by a tonalitic-granodioritic combination. 

    Discussion

    All lithographic and geochemical data show that Harris granite rocks are of A-type nature. Negative anomalies of Ba, Nb, Ti, Sr and Eu and enrichment in LILEs, especially Rb and Th, indicate the crustal origin of these rocks separation of feldspar during crystallization or the presence of feldspar as a residual phase in the origin and the anomaly of P and Ti to iron-titanium and apatite oxides. Enrichment in LILE and HFSE elements with negative anomalies of Nb and Ti is a characteristic of subduction-dependent. The negative anomaly of Eu in the trace element pattern can be attributed to granites, usually attributed to the mantle origin, previously due to the metamorphic activity of fluids from sediments deposited by LILE and HFSE elements (Pearce et al., 1984), or may be the nature of magmas rooted from a subcontinent meteorite mantle formed during early subduction. In addition, enrichment at Th, Rb, and depletion at Sr, Eu, Ba, Nb, and Ti indicate that the granites are rooted in crustal lavas (Zhao and Zhou., 2007).

    Keywords: Harris, Granite, Petrology, Magmatism, Intercontinental Rift