Breast Cancer Classification Approaches - A Comparative Analysis
Article Type:
Research/Original Article (دارای رتبه معتبر)

Cancer of the breast is a difficult disease to treat since it weakens the patient's immune system. Particular interest has lately been shown in the identification of particular immune signals for a variety of malignancies in this regard. In recent years, several methods for predicting cancer based on proteomic datasets and peptides have been published. The cells turns into cancerous cells because of various reasons and get spread very quickly while detrimental to normal cells. In this regard, identifying specific immunity signs for a range of cancers has recently gained a lot of interest. Accurately categorizing and compartmentalizing the breast cancer subtype is a vital job. Computerized systems built on artificial intelligence can substantially save time and reduce inaccuracy. Several strategies for predicting cancer utilizing proteomic datasets and peptides have been reported in the literature in recent years.It is critical to classify and categorize breast cancer treatments correctly. It's possible to save time while simultaneously minimizing the likelihood of mistakes using machine learning and artificial intelligence approaches. Using the Wisconsin Breast Cancer Diagnostic dataset, this study evaluates the performance of various classification methods, including SVC, ETC, KNN, LR, and RF (random forest). Breast cancer can be detected and diagnosed using a variety of measurements of data (which are discussed in detail in the article) (WBCD). The goal is to determine how well each algorithm performs in terms of precision, recall, and accuracy. The variation of each classification threshold has been tested on various algorithms and SVM turned out to be very promising.

Journal of Information Systems and Telecommunication, Volume:11 Issue: 1, Jan-Mar 2023
1 to 11  
دانلود و مطالعه متن این مقاله با یکی از روشهای زیر امکان پذیر است:
اشتراک شخصی
با عضویت و پرداخت آنلاین حق اشتراک یک‌ساله به مبلغ 990,000ريال می‌توانید 70 عنوان مطلب دانلود کنید!
اشتراک سازمانی
به کتابخانه دانشگاه یا محل کار خود پیشنهاد کنید تا اشتراک سازمانی این پایگاه را برای دسترسی نامحدود همه کاربران به متن مطالب تهیه نمایند!
  • حق عضویت دریافتی صرف حمایت از نشریات عضو و نگهداری، تکمیل و توسعه مگیران می‌شود.
  • پرداخت حق اشتراک و دانلود مقالات اجازه بازنشر آن در سایر رسانه‌های چاپی و دیجیتال را به کاربر نمی‌دهد.
In order to view content subscription is required

Personal subscription
Subscribe for 50 € euros via PayPal and download 70 articles during a year.
Organization subscription
Please contact us to subscribe your university or library for unlimited access!