Evaluating the trend of temperature changes, heat island and vegetation cover during the hot season in Yazd

Message:
Article Type:
Research/Original Article (دارای رتبه معتبر)
Abstract:
Introduction

Replacing natural vegetation cover with impermeable urban surfaces) stone, cement, metal, etc.) has resulted in increased land surface temperature which is considered to be the most important problem of urban areas. Distinct temperature difference between the city and the surrounding areas is called heat island (Melkpour et al., 2018). Increased land surface temperature and resulting heat islands in urban areas built without proper preplanning (Khakpour et al., 2016) especially in developing countries such as Iran experiencing a rapid growth rate have resulted in widespread environmental problems. Heat islands mainly occur due to the presence of man-made surfaces which prevent the reflection of sunlight and result in temperature increase. In general, urban heat islands result in increased air and land surface temperature and thermal inversion (Gartland, 2012).

Methodology

The present study applies a statistical-analytical research method based upon statistical data received from meteorological stations and extracted from satellite images. Climatic data recorded from 1976 to 2020 in Yazd Meteorological Station were retrieved from the General Meteorological Department of Yazd Province and used to measure temperature changes. Urban climate studies mainly take advantage of long-term patterns and thus, the present study has applied the common Man-Kendall method to measure the trend of temperature changes in warm season (July, August, and September). Also, satellite images collected by Landsat 4-8 in a 33-year period, including four statistical periods with a time interval of 11 years (the average recorded in July, August and September of 1987, 1998, 2009 and 2020), have been used to extract heat islands of Yazd city in warm seasons. These images collected under clear weather conditions were retrieved from the United States Geological Survey website (http://glovis.usgs.gov/) in the WGS-1984 UTM image system. NDVI index was used to investigate the vegetation cover. Main land uses discussed in the present study included barren lands, urban areas, vegetation cover and roads. Sample land uses were collected from Google Earth and visually interpreted in ArcMap. Maximum likelihood algorithm was used for the classification process. Finally, Land Surface Temperature was extracted from satellite images and compared with air temperature trend using the Mann-Kendall test.

Results & Discussion

Results indicate that due to thicker vegetation cover in summer, there has been a negative relationship between the vegetation cover and land surface temperature. In other words, land surface temperature has increased with decreased vegetation cover and vice versa. Types of land use identified in satellite images collected from Yazd city have showed that the city has experienced a widespread physical expansion during the 33-year statistical period regardless of the season under investigation and thus, built-up urban land use class has expanded significantly. As a result, vegetation cover has experienced a negative trend and decreased. Land surface temperature extracted from thermal images of Yazd city has proved parts of northwest and south of the city to be the core of its heat islands. This is due to the presence of barren lands, lack of evapotranspiration mechanisms, high heat absorption capacity and low conduction capacity. Man-Kendall test has found a significant increasing trend for temperature especially in recent years in which the temperature has increased about 2.3 °C. This is most possibly due to the increasing trend of urban population in recent decades, followed by increased residential structures and resulting heat island phenomenon.

Conclusion

In general, classification of urban land use types in Yazd has shown a significant physical expansion of the city during the statistical period. This physical development has occurred in all directions; beginning from the central and northeast-southeast parts, and moving towards northwest-southwest parts. Maximum NDVI was observed in a strip along the central part of Yazd in which vegetation cover is thicker. Green spaces are also observed in some areas of the city. Color spectrum of the LST map has shown relative changes of the ambient temperature in various parts of the city. High and very high temperature (between 41.5 and 50 °C) show the location of the heat islands on LST maps. Also, areas with a deep red color and a temperature above 50 °C have formed hot clusters formed or strengthened between 2009 and 2020 in the west and southwest parts of the city. Satellite images and related graphs have showed that in 2020, Yazd have witnessed a sharp increase in temperature and a heat island.  Temperature data of Yazd Meteorological Station and Man-Kendall test have shown a significant increasing trend (about 2.3°C), especially in recent years. These are related to the urban population growth in recent decades, followed by increased urban structures (residential-commercial) and heat island phenomenon.

Language:
Persian
Published:
Journal of of Geographical Data (SEPEHR), Volume:32 Issue: 125, 2023
Pages:
163 to 177
magiran.com/p2580185  
دانلود و مطالعه متن این مقاله با یکی از روشهای زیر امکان پذیر است:
اشتراک شخصی
با عضویت و پرداخت آنلاین حق اشتراک یک‌ساله به مبلغ 1,390,000ريال می‌توانید 70 عنوان مطلب دانلود کنید!
اشتراک سازمانی
به کتابخانه دانشگاه یا محل کار خود پیشنهاد کنید تا اشتراک سازمانی این پایگاه را برای دسترسی نامحدود همه کاربران به متن مطالب تهیه نمایند!
توجه!
  • حق عضویت دریافتی صرف حمایت از نشریات عضو و نگهداری، تکمیل و توسعه مگیران می‌شود.
  • پرداخت حق اشتراک و دانلود مقالات اجازه بازنشر آن در سایر رسانه‌های چاپی و دیجیتال را به کاربر نمی‌دهد.
In order to view content subscription is required

Personal subscription
Subscribe magiran.com for 70 € euros via PayPal and download 70 articles during a year.
Organization subscription
Please contact us to subscribe your university or library for unlimited access!