Wide area fault location for Multi-terminal HVDC using the distributed parameter line equations

Message:
Article Type:
Research/Original Article (دارای رتبه معتبر)
Abstract:

The increasing development of multi-terminal high-voltage direct current (MTDC) lines due to the advantages of this type of network over the AC network, especially in long distances, has drawn more attention to providing a solution to protect and estimate the fault location in this type of network. In this paper, a method based on distributed parameters line equations is presented for fault location in an MTDC network. In the proposed method, it is assumed that the measuring instruments are installed only on the terminals connected to the converter. The proposed algorithm includes three parts: identifying the faulty pole, detecting the faulty line and estimating the fault location. To identify the faulty pole, the voltage change index is proposed. Identifying the faulty pole leads to reducing the number of times the algorithm is executed and speeding up the entire process of estimating the fault location. Faulty line detection algorithm is also divided into offline and online subsections. In the offline section, a concept called hypothetical lines is introduced according to the network structure. In the online section, using hypothetical lines and applying line equations, a method is proposed to identify faulty lines. Then using a two-ended method, the location of fault is estimated in this line. If the data is not available on at least one side of the line, it is estimated using the distributed parameter line equations. The studied network includes overhead and cable lines and radial and ring structures so that the accuracy of the proposed method can be checked in all cases. The results of the simulations show the proper performance of the proposed method for various faults, including faults near the end of long lines and faults with high resistance.

Language:
Persian
Published:
Journal of Iranian Association of Electrical and Electronics Engineers, Volume:21 Issue: 2, 2024
Pages:
167 to 183
https://www.magiran.com/p2734924  
سامانه نویسندگان
  • Javad Sadeh
    Corresponding Author (2)
    Professor Electrical Engineering, Ferdowsi University, Mashhad, Iran
    Sadeh، Javad
اطلاعات نویسنده(گان) توسط ایشان ثبت و تکمیل شده‌است. برای مشاهده مشخصات و فهرست همه مطالب، صفحه رزومه را ببینید.
مقالات دیگری از این نویسنده (گان)