Gold Mineralization in Chah-Bagh Ductile-Brittle Shear Zones, Muteh Mining District, Sanandaj-Sirjan Zone

Abstract:
Chah-Bagh gold deposit is located in central part of Sanandaj-Sirjan zone, 60 km southwest of Delidjan, in Muteh mining district. Rock units exposing in the area underwent greenschist to lower amphibolite metamorphism. They consist of NW-SE trending deformed and metamorphosed volcano-sedimentary and acidic volcanic rocks. These units, thought to be of Devonian or pre-Devonian age have been intruded by basic sills and dikes.The rock units are characterized by several phases of intense deformation that lead to the generation of different fabrics and structures. The most important structure in the area is caused by WNW (N280-N290º) trending inverse dextral ductile shear zone. Mylonitization, extension of mylonitic foliation, penetrative stretching lineation, chevron folds, and etc. are generated by ductile deformation in the area.Gold mineralization occurs in ductile and brittle shear zones. The maximum gold concentration occurs along 1 km long, 60 meters wide NW-SE trending (N40-50E) ductile shear zone. Ductile gold mineralization, reported for the first time in Chah-Bagh, has NW (N60-80W) dipping lenticular shape. Samples taken from silicified parts of this zone contain 1.8-13.2 ppm gold. Deformation in this zone occurs as protomylonite, mylonite and ulteramylonite. Brittle mineralization, including gold-bearing siliceous-sulfidic zones, occurs along N40W tending, NE dipping normal faults. The main gold-bearing siliceous-sulfidic zone in Chah-Bagh is 100 meters long and 3-5 meters wide with N35W general trend. Geochemical analysis of samples taken from this sulfide-siliceous zone indicates near 1.82 ppm of gold grades. The rock units hosting the above mentioned shear zones consist mainly of intensely deformed meta-acidic volcanic and volcano-sedimentary rocks (meta-rhyolite and felsic schist). These rock units have experienced different types of alteration with various intensities. The most important ones are sericitization, kaolinitization, epidotization, tourmalinization, silicification and solfidization. Silicified and sulfide alteration observed in the inner parts of alteration zones coincide with the ore-bearing zones.Studies suggest temporal and spatial relation between alteration and deformation. Spatial relations are interpreted by overlapping alteration and deformation zones. Hydrothermal quartz and pyrites filled foliation parallel open spaces (generated during ductile deformation and mylonitization) and also micro-fractures of porphyroclasts (with grain cataclastic flow origin) simultaneously. These facts reflect temporal correlation between deformation and alteration. High gold contents are related to silicified highly-deformed mylonitic and ultramylonitic units and also sulfide-bearing zones coinciding with the inner parts of alteration zones. Simple ore-mineral assemblages include pyrite and chalcopyrite in ductile shear zone and pyrite, arsenopyrite and chalcopyrite in brittle ones. Iron hydroxides and other weathering products accompany these sulfide minerals in the alteration zones. Based on microscopic studies, quartz, the main rock-forming mineral in Chah-Bagh deposit, is considered to be of three generations: pre-deformation quartz, first stage hydrothermal quartz and hydrothermal quartz accompanied by sulfide (late stage), respectively. Based on microscopic structural and textural studies, sulfide minerals can be divided into two different generations. The first generation consists of euhedral and coarse grain pyrite, arsenopyrite and chalcopyrite occurring in the form of segregated grains or along weak surfaces (such as fractures and grain boundaries) of second stage and pre-deformation quartz grains. The second generation of sulfides is characterized by undeformed disseminated fine grain anhedral pyrite and chalcopyrite in altered rocks. In elevated gold-bearing samples, gold cannot be observed in siliceous gangue and altered sulfide mineral margins, however, electron microprobe analysis indicates invisible gold within the sulfide minerals. Based on these studies, gold has been observed with both pyrite and chalcopyrite phases. Silver exists as invisible within sulfide minerals and in the form of native one within siliceous gangue.Lithogeochemical survey perpendicular to ore-bearing zones shows positive correlation between silica, titanium, sulfur, iron, arsenic, molybdenum, tungsten and chromium and high-grade zones are accompanied by deformation and alteration. Light rare earth elements (LREE except Eu) are enriched in sulfidized and silicified parts with elevated gold contents.Controlling parameters for mineral concentration in Chah-Bagh deposit are shear zones (ductile and brittle) and alteration (silicification and sulfidization). Comparing Chah-Bagh main characteristics with orogenic gold deposits, Chah-Bagh has the most similarities with orogenic gold mineralization therefore it is considered to be of this type.
Language:
Persian
Published:
Geosciences Scientific Quarterly Journal, Volume:15 Issue: 60, 2006
Page:
142
magiran.com/p396294  
دانلود و مطالعه متن این مقاله با یکی از روشهای زیر امکان پذیر است:
اشتراک شخصی
با عضویت و پرداخت آنلاین حق اشتراک یک‌ساله به مبلغ 1,390,000ريال می‌توانید 70 عنوان مطلب دانلود کنید!
اشتراک سازمانی
به کتابخانه دانشگاه یا محل کار خود پیشنهاد کنید تا اشتراک سازمانی این پایگاه را برای دسترسی نامحدود همه کاربران به متن مطالب تهیه نمایند!
توجه!
  • حق عضویت دریافتی صرف حمایت از نشریات عضو و نگهداری، تکمیل و توسعه مگیران می‌شود.
  • پرداخت حق اشتراک و دانلود مقالات اجازه بازنشر آن در سایر رسانه‌های چاپی و دیجیتال را به کاربر نمی‌دهد.
In order to view content subscription is required

Personal subscription
Subscribe magiran.com for 70 € euros via PayPal and download 70 articles during a year.
Organization subscription
Please contact us to subscribe your university or library for unlimited access!