به جمع مشترکان مگیران بپیوندید!

تنها با پرداخت 70 هزارتومان حق اشتراک سالانه به متن مقالات دسترسی داشته باشید و 100 مقاله را بدون هزینه دیگری دریافت کنید.

برای پرداخت حق اشتراک اگر عضو هستید وارد شوید در غیر این صورت حساب کاربری جدید ایجاد کنید

عضویت
جستجوی مقالات مرتبط با کلیدواژه

‎$s$-dominating function‎

در نشریات گروه ریاضی
تکرار جستجوی کلیدواژه ‎$s$-dominating function‎ در نشریات گروه علوم پایه
  • Ghazale Asemian, Nader Jafari Rad *, Abolfazl Tehranian, Hamid Rasouli
    ‎Let $r\geq 2$. A subset $S$ of vertices of a graph $G$ is a $r$-hop independent dominating set if every vertex outside $S$ is at distance $r$ from a vertex of $S$, and for any pair $v, w\in S$, $d(v, w)\neq r$. A $r$-hop Roman dominating function ($r$HRDF) is a function $f$ on $V(G)$ with values $0,1$ and $2$ having the property that for every vertex $v \in V$ with $f(v) = 0$ there is a vertex $u$ with $f(u)=2$ and $d(u,v)=r$. A $r$-step Roman dominating function ($r$SRDF) is a function $f$ on $V(G)$ with values $0,1$ and $2$ having the property that for every vertex $v$ with $f(v)=0$ or $2$, there is a vertex $u$ with $f(u)=2$ and $d(u,v)=r$. A $r$HRDF $f$ is a $r$-hop Roman independent dominating function if for any pair $v, w$ with non-zero labels under $f$, $d(v, w)\neq r$. We show that the decision problem associated with each of $r$-hop independent domination, $r$-hop Roman domination, $r$-hop Roman independent domination and $r$-step Roman domination is NP-complete even when restricted to planar bipartite graphs or planar chordal graphs.
    Keywords: Dominating Set, Hop Dominating Set, Step Dominating Set, Hop Independent Set, Hop Roman Dominating Function, Hop Roman Independent Dominating Function, Complexity
  • Hossein Abdollahzadeh Ahangar *, Marzieh Soroudi, Jafar Amjadi, Seyed Mahmoud Sheikholeslami
    Let $G=(V, E)$ be a simple graph with vertex set $V$ and edge set $E$. A {\em total Roman dominating function} on a graph $G$ is a function $f:V\rightarrow \{0,1,2\}$ satisfying the following conditions: (i) every vertex $u$ {\color{blue}such that} $f(u)=0$ is adjacent to at least one vertex $v$ {\color{blue}such that} $f(v)=2$ and (ii) the subgraph of $G$ induced by the set of all vertices of positive weight has no isolated vertex. The weight of a total Roman dominating function $f$ is the value, $f(V)=\Sigma_{u\in V(G)}f(u)$. The {\em total Roman domination number} $\gamma_{tR}(G)$ of $G$ is the minimum weight of a total Roman dominating function of $G$. A subset $S$ of $V$ is a $2$-independent set of $G$ if every vertex of $S$ has at most one neighbor in $S$. The maximum cardinality of a $2$-independent set of $G$ is the $2$-independence number $\beta_2(G)$. These two parameters are incomparable in general, however, we show that if $T$ is a tree, then $\gamma_{tR}(T)\le \frac{3}{2}\beta_2(T)$ and we characterize all trees attaining the equality.
    Keywords: total Roman dominating function, total Roman domination number, $2$-independent set, $2$-independence number
  • Saeed Kosari *, Jafar Amjadi, Aysha Khan, Lutz Volkmann
    An independent Italian dominating function (IID-function) on a graph $G$ is a function $f:V(G)rightarrow{0,1,2}$ satisfying the conditions that (i) $sum_{uin N(v)}f(u)geq2$ when $f(v)=0$, and (ii) the set of all vertices assigned non-zero values under $f$ is independent. The weight of an IID-function is the sum of its function values over all vertices, and the independent Italian domination number $i_{I}(G)$ of $G$ is the minimum weight of an IID-function on $G$. In this paper, we initiate the study of the independent Italian bondage number $b_{iI}(G)$ of a graph $G$ having at least one component of order at least three, defined as the smallest size of a set of edges of $G$ whose removal from $G$ increases $i_{I}(G)$. We show that the decision problem associated with the independent Italian bondage problem is NP-hard for arbitrary graphs. Moreover, various upper bounds on $b_{iI}(G)$ are established as well as exact values on it for some special graphs. In particular, for trees $T$ of order at least three, it is shown that $b_{iI}(T)leq2$.
    Keywords: Independent Italian dominating function, independent Italian domination number, independent Italian bondage number
  • Abolfazl Poureidi *
    Let $G=(V,E)$ be a graph.  A double Roman dominating function  (DRDF) of   $G $   is a function   $f:Vto {0,1,2,3}$  such that, for each $vin V$ with $f(v)=0$,  there is a vertex $u $  adjacent to $v$  with $f(u)=3$ or there are vertices $x$ and $y $  adjacent to $v$  such that  $f(x)=f(y)=2$ and for each $vin V$ with $f(v)=1$,  there is a vertex $u $    adjacent to $v$    with  $f(u)>1$.  The weight of a DRDF $f$ is   $ f (V) =sum_{ vin V} f (v)$.   Let $n$ and  $k$ be integers such that  $3leq 2k+ 1  leq n$.  The   generalized Petersen graph $GP (n, k)=(V,E) $  is the  graph  with  $V={u_1, u_2,ldots,  u_n}cup{v_1, v_2,ldots, v_n}$ and $E={u_iu_{i+1}, u_iv_i, v_iv_{i+k}:  1 leq i leq n}$, where  addition is taken  modulo $n$. In this paper,  we firstly   prove that the  decision     problem  associated with   double Roman domination is NP-omplete even restricted to planar bipartite graphs with maximum degree at most 4.  Next, we   give  a dynamic programming algorithm for  computing a minimum DRDF (i.e., a  DRDF   with minimum weight  along  all   DRDFs)  of $GP(n,k )$  in $O(n81^k)$ time and space  and so a  minimum DRDF  of $GP(n,O(1))$  can be computed in $O( n)$ time and space.
    Keywords: Double Roman dominating function, Algorithm, Dynamic programming, generalized Petersen graph
  • M. Hajjari, Hossein Abdollahzadeh Ahangar *, Rana Khoeilar, Zehui Shao, S.M. Sheikholeslami
    For a graph $G=(V,E)$, a triple Roman dominating function (3RD-function) is a function $f:Vto {0,1,2,3,4}$ having the property that (i) if $f(v)=0$ then $v$ must have either one neighbor $u$ with $f(u)=4$, or two neighbors $u,w$ with $f(u)+f(w)ge 5$ or three neighbors $u,w,z$ with $f(u)=f(w)=f(z)=2$, (ii) if $f(v)=1$ then $v$ must have one neighbor $u$ with $f(u)ge 3$ or two neighbors $u,w$ with $f(u)=f(w)=2$, and (iii) if $f(v)=2$ then $v$ must have one neighbor $u$ with $f(u)ge 2$. The weight of a 3RDF $f$ is the sum $f(V)=sum_{vin V} f(v)$, and the minimum weight of a 3RD-function on $G$ is the triple Roman domination number of $G$, denoted by $gamma_{[3R]}(G)$. In this paper, we prove that for any connected graph $G$ of order $n$ with minimum degree at least two,  $gamma_{[3R]}(G)leq frac{3n}{2}$.
    Keywords: Triple Roman dominating function, Triple Roman domination number, Trees
  • رعنا خوئیلر*، مرضیه سرودی، مریم عطاپور

    فرض کنید (G= (V,E  یک گراف ساده بوده و ، {f:V→{0,1,2 یک تابع باشد که وزن آن به صورت (w (f تعریف می شود. راس   v نسبت به تابع  f محافظت شده است هرگاه  0<(f (v یا 0= (v) f و v با راسی با وزن مثبت مجاور باشد. تابع {f:V→{0,1,2  ، یک تابع احاطه گر هم-رومی (به اختصار CRDF ) نامیده می شود هرگاه: (1) هر راس u با وزن صفر حداقل با یک راس  v با وزن مثبت مجاور باشد و (2) هر راس v  با وزن مثبت حداقل با یک راس u با وزن صفر مجاور باشد، به طوری که هر راس  G نسبت به تابع {f '39' :V→{0,1,2  ، که با ضابطه ی f '(v)=f (v)-1، f '(u)=1) وf ') chr ('39')(x)=f(x برای سایر ریوس تعریف می شود، محافظت شده باشد. عدد احاطه ای هم-رومی گراف G که با نماد (ϫ_cr (G نمایش داده می شود، کمترین وزن در بین تمامی توابع احاطه گر هم-رومی گراف  G است. در این مقاله ، عدد احاطه ای هم-رومی شبکه ها را مطالعه کرده و مقدار دقیق این پارامتر را برای شبکه های P2◼Pn و P3◼Pn به دست می آوریم .

    کلید واژگان: تابع احاطه گر رومی- تابع احاطه گر هم-رومی، شبکه، عدد احاطه ای رومی، عدد احاطه ای هم-رومی
    Rana Khoeilr*, Marzieh Soroudi, Maryam Atapour

    Let G = (V, E) be a simple graph with vertex set 𝑉 and let 𝑓: 𝑉 → {0,1,2} be a function of weight 𝜔(𝑓) = ∑ 𝑓(𝑣) 𝑣∈𝑉(𝐺) . A vertex 𝑣 is protected with respect to 𝑓, if 𝑓(𝑣) > 0 or 𝑓(𝑣) = 0 and 𝑣 is adjacent to a vertex 𝑢 such that 𝑓(𝑢) > 0. The function 𝑓 is a co-Roman dominating function, abbreviated CRDF if: (i) every vertex 𝑢 with 𝑓(𝑢) = 0 is adjacent to a vertex 𝑣 for which 𝑓(𝑣) > 0, and (ii) every vertex 𝑣 with 𝑓(𝑣) > 0 has a neighbor 𝑢 for which 𝑓(𝑢) = 0, such that each vertex of 𝐺 is protected with respect to the function 𝑓 ′ : 𝑉(𝐺) → {0,1,2}, defined by 𝑓 ′ (𝑣) = 𝑓(𝑣) −1, 𝑓 ′ (𝑢) = 1 and 𝑓 ′ (𝑥) = 𝑓(𝑥) for 𝑥 ∈ 𝑉(𝐺) − {𝑢, 𝑣}. The co-Roman domination number of a graph G, denoted by 𝛾𝑐𝑟(𝐺), is the minimum weight of a co-Roman dominating function on G. In this paper, we study the co-Roman domination number of grid graphs and we obtain this parameter for 𝑃2 × 𝑃𝑛 and 𝑃3 × 𝑃𝑛.

    Keywords: Roman dominating function, co-Roman dominating function, grid, Roman domination number, co-Roman domination number
  • Abolfazl Poureidi *
    Let $G=(V,E)$ be a given graph of order $n $. A function $f : V to {0,1, 2}$ is an independent Roman dominating function (IRDF) on $G$ if for every vertex $vin V$ with $f(v)=0$ there is a vertex $u$ adjacent to $v$ with $f(u)=2$ and ${vin V:f(v)> 0}$ is an independent set. The weight of an IRDF $f$ on $G $ is the value $f(V)=sum_{vin V}f(v)$. The minimum weight of an IRDF among all IRDFs on $G$ is called the independent Roman domination number of~$G$. In this paper, we give algorithms for computing the independent Roman domination number of $G$ in $O(|V|)$ time when $G=(V,E)$ is a tree, unicyclic graph or proper interval graph.
    Keywords: Independent Roman dominating function, Algorithm, tree, Unicyclic graph, Proper interval graph
  • سید حسین میرحسینی، نادر جعفری راد
    S.H. Mirhoseini, N. Jafari Rad *

    ‎A perfect Roman dominating function (PRDF) on a graph $G$ is a function $ f:V(G)to {0,1,2}$ satisfying the condition that every vertex $u$ with $f(u) = 0$ is adjacent to exactly one vertex $v$ for which $f(v) = 2$‎. ‎The weight of a PRDF $f$ is the sum of the weights of the vertices under $f$‎. ‎The perfect Roman domination number of $G$ is the minimum weight of a PRDF in $G$‎. ‎In this paper we study algorithmic and computational complexity aspects of the minimum perfect Roman domination problem (MPRDP)‎. ‎We first correct the proof of a result published in [Bulletin‎‎Iran‎. ‎Math‎. ‎Soc‎. ‎14(2020)‎, ‎342--351]‎, ‎and using a similar argument‎, ‎show that MPRDP is APX-hard for graphs with bounded degree 4‎.‎We prove that the decision problem associated to MPRDP is NP-complete even when restricted to star convex bipartite graphs‎. ‎Moreover‎, ‎we show that MPRDP is solvable in linear time for bounded tree-width‎‎graphs‎. ‎We also show that the perfect domination problem and perfect Roman domination problem are not equivalent in computational complexity aspects‎. ‎Finally we propose an integer linear programming formulation for MPRDP‎.

    Keywords: Dominating set‎, ‎perfect dominating set‎, ‎Roman dominating function‎, ‎perfect Roman dominating function‎, ‎APX-hard
  • Noor ALawiah Abd Aziz, Nader Jafari Rad *

    ‎‎For an integer $kgeq 2$‎, ‎a Roman $k$-tuple dominating function‎, ‎(or just RkDF)‎, ‎in a graph $G$ is a function $f colon V(G) rightarrow {0‎, ‎1‎, ‎2}$ satisfying the condition that every vertex $u$ for which $f(u) = 0$ is adjacent to at least $k$ vertices $v$ for which $f(v) = 2$‎, ‎and every vertex $u$ for which $f(u) neq 0$ is adjacent to at least $k-1$ vertices $v$ for which $f(v) = 2$‎. ‎The Roman $k$-tuple domination number of ‎$‎G‎$‎‎ ‎is the minimum weight of an RkDF in $G$. ‎In this note we settle two problems posed in [Roman $k$-tuple Domination in Graphs‎, ‎Iranian J‎. ‎Math‎. ‎Sci‎. ‎Inform‎. ‎15 (2020)‎, ‎101--115]‎.

    Keywords: ‎ Dominating set, Roman domination, Total Roman dominating function, Roman k-tuple
  • Nasrin Dehgardi *
    ‎Let G be a graph‎. ‎A 2-rainbow dominating function (or‎ 2-RDF) of G is a function f from V(G)‎ ‎to the set of all subsets of the set {1,2}‎ ‎such that for a vertex v ∈ V (G) with f(v) = ∅, ‎the‎‎condition $bigcup_{uin N_{G}(v)}f(u)={1,2}$ is fulfilled‎, wher NG(v)  is the open neighborhood‎‎of v‎. ‎The weight of 2-RDF f of G is the value‎‎$omega (f):=sum _{vin V(G)}|f(v)|$‎. ‎The 2-rainbow‎‎domination number of G‎, ‎denoted by Υr2 (G)‎, ‎is the‎‎minimum weight of a 2-RDF of G‎. ‎A 2-RDF f is called an outer independent 2-rainbow dominating function ‎(or OI2-RDF) of G if‎‎the set of all v ∈ V (G) with f(v) = ∅ is an‎ ‎independent set‎. ‎The outer independent 2-rainbow domination number Υoir2  (G) is‎‎the minimum weight of an OI2-RDF of G‎. ‎In this paper‎, ‎we obtain the‎‎outer independent 2-rainbow domination number of Pm□Pn‎ ‎and‎ Pm□Cn‎. ‎Also we determine the value of Υoir2  (Cm2Cn) when m or n is even‎.
    Keywords: 2-rainbow dominating function‎, ‎2-rainbow domination number‎, ‎outer independent 2-rainbow dominating function‎, ‎outer independent 2-rainbow domination number‎, ‎C‎artesian product
  • Hossein Abdollahzadeh Ahangar *
    ‎A  2-rainbow dominating function (2RDF) of a graph $G$ is a‎ ‎function $f$ from the vertex set $V(G)$ to the set of all subsets‎ ‎of the set ${1,2}$ such that for any vertex $vin V(G)$ with‎ ‎$f(v)=emptyset$ the condition $bigcup_{uin N(v)}f(u)={1,2}$‎ ‎is fulfilled‎, ‎where $N(v)$ is the open neighborhood of $v$‎. ‎A ‎ ‎maximal 2-rainbow dominating function of a graph $G$ is a ‎‎$‎‎2‎$‎-rainbow dominating function $f$ such that the set ${win‎‎V(G)|f(w)=emptyset}$ is not a dominating set of $G$‎. ‎The‎ ‎weight of a maximal 2RDF $f$ is the value $omega(f)=sum_{vin‎ ‎V}|f (v)|$‎. ‎The  maximal $2$-rainbow domination number of a‎ ‎graph $G$‎, ‎denoted by $gamma_{m2r}(G)$‎, ‎is the minimum weight of a‎ ‎maximal 2RDF of $G$‎. ‎In this paper‎, ‎we continue the study of maximal‎ ‎2-rainbow domination {number} in graphs‎. ‎Specially‎, ‎we first characterize all graphs with large‎ ‎maximal 2-rainbow domination number‎. ‎Finally‎, ‎we determine the maximal ‎$‎2‎$‎‎-‎rainbow domination number in the sun and sunlet graphs‎.
    Keywords: $2$-rainbow dominating function, $2$-rainbow domination number, maximal $2$-rainbow dominating function, maximal $2$-rainbow domination number
  • رعنا خوئیلر *، مرضیه سرودی

    فرض کنید G=(V,E) یک گراف و f:V (G)→{0,1,2} یک تابع باشد. راسv نسبت به تابع f محافظت شده است هرگاه f (v) >0 یا f (v)=0و v با راسی به وزن مثبت مجاور باشد. تابع f، یک تابع احاطه گر هم-رومی (به اختصار CRDF ) است هرگاه: (1) هر راس درV محافظت شده باشد، و (2) هر راسu∈V با وزن مثبت همسایه ای همچون v∈Vبا f (v)=0 داشته باشد به طوری که تابع f_uv:V→{0,1,2} تعریف شده به صورت f_uv (u)=f(u)-1 ، f_uv (v)=1 و برای x∈V-\{v,u} به صورت f_uv (x) =f (x)، هیچ راس محافظت نشده ای نداشته باشد. وزنf به صورت ω (f)=∑_(v∈V)▒〖f (v)〗 تعریف می شود. عدد احاطه ای هم-رومی گراف G که با نماد γ_cr G) نمایش داده می شود، کمترین وزن در بین تمامی توابع احاطه گر هم-رومی گراف G می باشد. در این مقاله ، ابتدا یک کران بالا برای عدد احاطه ای هم-رومی درخت ها برحسب تعداد ریوس، تعداد برگ ها و تعداد ریوس تکیه گاه درخت T ارایه می کنیم. همچنین ما کران هایی برای عدد احاطه ای هم-رومی یک درخت برحسب مرتبه و سایر پارامترهای احاطه ای آن به دست می آورد.

    *فرمولها به درستی نمایش داده نمی شوند

    کلید واژگان: تابع احاطه گر رومی، تابع احاطه گر هم-رومی، عدد احاطه ای رومی، عدد احاطه ای هم-رومی
    Rana Khoeilar *, Marzieh Sorudi

    Let G=(V,E) be a graph and let f:V(G)→{0,1,2} be a function‎. ‎A vertex v is protected with respect to f‎, ‎if f(v)>0 or f(v)=0 and v is adjacent to a vertex of positive weight‎. ‎The function f is a co-Roman dominating function‎, ‎abbreviated CRDF if‎: ‎(i) every vertex in V is protected‎, ‎and (ii) each u∈V with positive weight has a neighbor v∈V with f(v)=0 such that the function f_uv:V→{0,1,2}‎, ‎defined by f_uv (v)=1‎, ‎f_uv (u)=f(u)-1 and f_uv (x)=f(x)for x∈V-{v,u}‎, ‎has no unprotected vertex‎. ‎The weight of f is ω(f)=∑_(v∈V)▒〖f(v)〗‎. ‎The co-Roman domination number of a graph G ‎, ‎denoted by γ_cr G)‎, ‎is the minimum weight of a co-Roman dominating function on G ‎. ‎In this paper, we first present an upper bound on the co-Roman domination number of trees in terms of order, the number of leaves and supports‎. Then we find bounds on the co-Roman domination number of a graph and its other dominating parameters .

    Keywords: Roman dominating function, co-Roman dominating function, grid, Roman domination number, co-Roman domination number
  • Nader Jafari Rad *, Abolfazl Poureidi
    ‎Let $G=(V,E)$ be a graph‎. ‎A subset $Ssubset V$ is a hop dominating set‎‎if every vertex outside $S$ is at distance two from a vertex of‎‎$S$‎. ‎A hop dominating set $S$ which induces a connected subgraph‎ ‎is called a connected hop dominating set of $G$‎. ‎The‎‎connected hop domination number of $G$‎, ‎$ gamma_{ch}(G)$,‎‎‎ ‎is the minimum cardinality of a connected hop‎‎dominating set of $G$‎. ‎A hop‎‎Roman dominating function (HRDF) of a graph $G$ is a function $‎‎f‎: ‎V(G)longrightarrow {0‎, ‎1‎, ‎2} $ having the property that‎‎for every vertex $ v in V $ with $ f(v) = 0 $ there is a‎‎vertex $ u $ with $ f(u)=2 $ and $ d(u,v)=2 $‎.‎The weight of‎‎an HRDF $ f $ is the sum $f(V) = sum_{vin V} f(v) $‎. ‎The‎‎minimum weight of an HRDF on $ G $ is called the hop Roman‎‎domination number of $ G $ and is denoted by $ gamma_{hR}(G)‎‎$‎. ‎We give an algorithm‎‎that decides whether $gamma_{hR}(T)=2gamma_{ch}(T)$ for a given‎‎tree $T$.‎‎{bf Keywords:} hop dominating set‎, ‎connected hop dominating set‎, ‎hop Roman dominating‎‎function‎.
    Keywords: hop dominating set, connected hop dominating set, hop Roman dominating function
  • Mostafa Momeni *, Ali Zaeembashi
    Let $G$ be a graph‎. ‎A function $f‎ : ‎V (G) longrightarrow {0,1}$‎, ‎satisfying‎ ‎the condition that every vertex $u$ with $f(u) = 0$ is adjacent with at‎ ‎least one vertex $v$ such that $f(v) = 1$‎, ‎is called a dominating function $(DF)$‎. ‎The weight of $f$ is defined as $wet(f)=Sigma_{v in V(G)} f(v)$‎. ‎The minimum weight of a dominating function of $G$‎ ‎is denoted by‎ ‎$gamma (G)$‎, ‎and is called the domination number of $G$‎. ‎A dominating‎ ‎function $f$ is called a global dominating function $(GDF)$ if $f$ is‎ ‎also a $DF$ of $overline{G}$‎. ‎The minimum weight of a global dominating function is denoted by‎ ‎$gamma_{g}(G)$ and is called global domination number of $G$‎. ‎In this paper we introduce a generalization of global dominating function‎. ‎Suppose $G$ is a graph and $sgeq 2$ and $K_n$ is the complete graph on $V(G)$‎. ‎A function $ f:V(G)longrightarrow { 0,1} $ on $G$ is $s$-dominating function $(s-DF)$‎, ‎if there exists some factorization ${G_1,ldots,G_s }$ of $K_n$‎, ‎such that $G_1=G$ and $f$ is dominating function of each $G_i$‎.
    Keywords: ‎‎dominating function‎, ‎global dominating function‎, ‎$s$-dominating function‎, ‎$gamma-$function‎, ‎$gamma, s-$function
  • Nasrin Dehgardi *
    ‎‎Let $G=(V‎, ‎E)$ be a simple graph with vertex set $V$ and edge set $E$‎. ‎A {em mixed Roman dominating function} (MRDF) of $G$ is a function $f:Vcup Erightarrow {0,1,2}$ satisfying the condition that every element $xin Vcup E$ for which $f(x)=0$ is adjacent‎ ‎or incident to at least one element $yin Vcup E$ for which $f(y)=2$‎. ‎The weight of an‎ ‎MRDF $f$ is $sum _{xin Vcup E} f(x)$‎. ‎The mixed Roman domination number $gamma^*_R(G)$ of $G$ is‎ ‎the minimum weight among all mixed Roman dominating functions of $G$‎. ‎A subset $S$ of $V$ is a 2-independent set of $G$ if every vertex of $S$ has at most one neighbor in $S$‎. ‎The minimum cardinality of a 2-independent set of $G$ is the 2-independence number $beta_2(G)$‎. ‎These two parameters are incomparable in general‎, ‎however‎, ‎we show that if $T$ is a tree‎, ‎then $frac{4}{3}beta_2(T)ge gamma^*_R(T)$ and we characterize all trees attaining the equality‎.
    Keywords: Mixed Roman dominating function‎, ‎Mixed Roman domination number‎, ‎2-independent set‎, ‎2-independence number
  • حسین عبدالله زاده آهنگر، زهرا قندعلی
    تابع یک تابع احاطه گر 2-رنگین کمانی برای گراف نامیده می شود هرگاه برای هر راس با شرط داشته باشیم. وزن یک 2RDF برابر است با. عدد احاطه گر 2-رنگین کمانی گراف را که با نماد نمایش می دهیم کمترین وزن یک 2RDF در گراف است. تابع احاطه گر ماکسیمال 2-رنگین کمانی (M2RDF) برای گراف یک تابع احاطه گر 2-رنگین کمانی می باشد به طوری که مجموعه ی یک مجموعه ی احاطه گر برای گراف نباشد. وزن یک M2RDF برابر است با. عدد احاطه گر ماکسیمال 2-رنگین کمانی گراف را که با نماد نمایش می دهیم کمترین وزن یک M2RDF در گراف است. در این مقاله مطالعه روی پارامتر احاطه گر ماکسیمال 2-رنگین کمانی را ادامه می دهیم. ابتدا تمام گراف های را دسته بندی می کنیم به طوری که عدد احاطه گر آن ها برابر 2 یا 3 می باشد. در پایان تمام گراف های با کمر حداقل 5 را دسته بندی می کنیم بهطوری که باشد.
    کلید واژگان: تابع احاطه گر 2، رنگین کمانی، عدد احاطه گر 2، رنگین کمانی، تابع احاطه گر ماکسیمال 2، رنگین کمانی، عدد احاطه گر ماکسیمال 2، رنگین کمانی
    H. Abdollahzadeh Ahangar, Z. Ghandali
    A 2-rainbow dominating function ( ) of a graph is a function from the vertex set to the set of all subsets of the set such that for any vertex with the condition is fulfilled, where is the open neighborhood of . A maximal 2-rainbow dominating function on a graph is a 2-rainbow dominating function such that the set is not a dominating set of . The weight of a maximal is the value . The maximal 2-rainbow domination number of a graph , denoted by , is the the minimum weight of a maximal of . In this paper, we continue the study of maximal 2-rainbow domination number. We characterize all graphs of order whose maximal 2-rainbow domination number is equal to 2 or 3. Finally, we characterize all graphs of order with for which .
    Keywords: 2-rainbow dominating function, 2-rainbow domination number, maximal 2-rainbow dominating function, maximal 2-rainbow domination number
  • H. Abdollahzadeh Ahangar *, S.R. Mirmehdipour
    A {em Roman dominating function} on a graph $G$ is a function $f:V(G)rightarrow {0,1,2}$ satisfying the condition that every vertex $u$ for which $f(u) = 0$ is adjacent to at least one vertex $v$ for which $f(v) =2$. {color{blue}A {em restrained Roman dominating} function} $f$ is a {color{blue} Roman dominating function if the vertices with label 0 induce a subgraph with no isolated vertex.} The weight of a restrained Roman dominating function is the value $omega(f)=sum_{uin V(G)} f(u)$. The minimum weight of a restrained Roman dominating function of $G$ is called the { em restrained Roman domination number} of $G$ and denoted by $gamma_{rR}(G)$. In this paper we establish some sharp bounds for this parameter.
    Keywords: Roman dominating function, Roman domination number, restrained Roman dominating function, restrained Roman domination number
  • Maryam Atapour, Sepideh Norouzian, Seyed Mahmoud Sheikholeslami
    A function $f:V(G)rightarrow {-1,0,1}$ is a {em minus dominating function} if for every vertex $vin V(G)$, $sum_{uin N[v]}f(u)ge 1$. A minus dominating function $f$ of $G$ is called a {em global minus dominating function} if $f$ is also a minus dominating function of the complement $overline{G}$ of $G$. The {em global minus domination number} $gamma_{g}^-(G)$ of $G$ is defined as $gamma_{g}^-(G)=min{sum_{vin V(G)} f(v)mid f mbox{is a global minus dominating function of} G}$. In this paper we initiate the study of global minus domination number in graphs and we establish lower and upper bounds for the global minus domination number.
    Keywords: minus dominating function, minus domination number, global minus dominating function, global minus domination number
نکته
  • نتایج بر اساس تاریخ انتشار مرتب شده‌اند.
  • کلیدواژه مورد نظر شما تنها در فیلد کلیدواژگان مقالات جستجو شده‌است. به منظور حذف نتایج غیر مرتبط، جستجو تنها در مقالات مجلاتی انجام شده که با مجله ماخذ هم موضوع هستند.
  • در صورتی که می‌خواهید جستجو را در همه موضوعات و با شرایط دیگر تکرار کنید به صفحه جستجوی پیشرفته مجلات مراجعه کنید.
درخواست پشتیبانی - گزارش اشکال