به جمع مشترکان مگیران بپیوندید!

تنها با پرداخت 70 هزارتومان حق اشتراک سالانه به متن مقالات دسترسی داشته باشید و 100 مقاله را بدون هزینه دیگری دریافت کنید.

برای پرداخت حق اشتراک اگر عضو هستید وارد شوید در غیر این صورت حساب کاربری جدید ایجاد کنید

عضویت

جستجوی مقالات مرتبط با کلیدواژه « graph » در نشریات گروه « ریاضی »

تکرار جستجوی کلیدواژه « graph » در نشریات گروه « علوم پایه »
  • Gholamhassan Shirdel *, Mojtaba Ghanbari, Mitra Ramezani

    Assume we have a set of k colors and to each vertex of a graph G we assign an arbitry of these colors. If we require that each vertex to set is assigned has in its closed neighborhood all k colors, then this is called the generalized k-rainbow dominating function of a graph G. The corresponding γgkr, which is the minimum sum of numbers of assigned colores over all vertices of G, is called the gk-rainbow domination number of G. In this paper we present a linear algorithms for determining a minimum generalized 2-rainbow dominating set of a tree and on GP(n,2).

    Keywords: Graph, Generalized K-Rainbow, Generalized 2-Rainbow Domination}
  • Nima Ghanbari, Saeid Alikhani *
    Suppose that G is a connected graph constructed from pairwise disjoint connected graphs G1,... ,Gt by selecting a vertex of G1, a vertex of G2, and identifying these two vertices. Then continue in this manner inductively. The graphs G1,... ,Gk are the primary subgraphs of G. Some particular cases of these graphs are important in chemistry which we consider them in this paper and study their elliptic Sombor index.
    Keywords: Sombor Index, Elliptic Sombor Index, Graph, Polymer}
  • F. Esmaeili Khalil Saraei *, S. Raminfar
    Let $R$ be a commutative semiring and $I$ be a $k$-ideal of $R$. In this paper, we introduce the $k$-ideal-based graph of $R$, denoted by $\Gamma_{I^{*}}(R)$. The basic properties and possible structures of the graph are studied.
    Keywords: Graph, Semiring, $K$-Ideal, $Q, {R}$-Ideal}
  • Michal Stas *
    The main aim of the paper is to give the crossing number of the join product $G^\ast + D_n$ for the graph $G^\ast$ isomorphic to 4-regular graph on six vertices except for two distinct edges with no common vertex such that two remaining vertices are still adjacent, and where $D_n$ consists of $n$ isolated vertices. The proofs are done with possibility of an existence of a separating cycle in some particular drawing of the investigated graph $G^\ast$ and also with the help of well-known exact values for crossing numbers of join products of two subgraphs $H_k$ of $G^\ast$ with discrete graphs.
    Keywords: graph, good drawing, crossing number, join product, separating cycle}
  • Lekshmi K Sheela, M. Changat *, Asha Paily
    Transit functions are introduced to study betweenness, intervals and convexity in an axiomatic setup on graphs and other discrete structures. Prime example of a transit function on graphs is the well studied interval function of a connected graph. In this paper, we study the Cycle transit function $mathcal{C}( u,v)$ on graphs which is a transit function derived from the interval function. We study the betweenness properties and also characterize graphs in which the cycle transit function coincides with the interval function. We also characterize graphs where $|mathcal{C}( u,v)cap mathcal{C}( v,w) cap mathcal{C}( u,w)|le 1$ as an analogue of median graphs.
    Keywords: Interval function, Cycle transit function, Betweenness, graph}
  • Ali Asghar Bagheri, Alireza Mortezaei *, Mohammad Ali Sayarinejad
    Many abilities of Monte Carlo simulation methods have led to their increasing use in solving various reliability problems of structures. These methods are based on generating random samples in order to simulate events and estimate their results. Achieving certain accuracy requires a significant number of simulation operations. Acceptable accuracies can be achieved with a smaller number of samples by adopting different approaches. In this article, for the first time, symmetric structures are analyzed using the theory of graphs and canonical forms, the frequency of the structures is calculated, and their reliability is also checked using these theories. Also, the study and investigation of the calculation of frequencies and eigenvectors corresponding to symmetric structural models from the point of view of the decomposition of the stiffness matrix in probabilistic reliability analysis, which we will achieve this goal by using the proposed theories. In this article, in addition to obtaining all canonical forms, the relationship between all canonical forms is obtained. Finally, a new Rayleigh-based theory called the proposed improved Rayleigh theory is presented, which is used to extract the natural frequencies of structures. Also, in this research, several samples of different frames and structures were presented using the proposed method and finally, numerical results were presented and the solution of the three-story frame with 24 degrees of freedom was presented. It can be seen from the results that the proposed method has a much higher speed and accuracy than the Monte Carlo method.
    Keywords: canonical forms, improved Rayleigh-Ritz method, Graph, symmetrical structure analysis}
  • Ivan Gutman *, Necla Gürsoy, Arif Gürsoy, Alper Ülker
    The Sombor index of the graph $G$ is a degree based topological index, defined as $SO = sum_{uv in mathbf E(G)}sqrt{d_u^2+d_v^2}$, where $d_u$ is the degree of the vertex $u$, and $mathbf E(G)$ is the edge set of $G$. Bounds on $SO$ are established in terms of graph energy, size of minimum vertex cover, matching number, and induced matching number.
    Keywords: Sombor index, degree (of vertex), graph}
  • Tahere Nozari *, Fateme Movahedi
    The study of hyperstructures derived from particular mathematical objects is very important and interesting. Graph theory has been established as a fundamental and important tool for solving practical problems in other branches of mathematics. This paper can be considered as one of the connections between hyperstructures and graph theory. In this way, by using the dominating set notion of a graph, we define a hyperoperation on verticals of it and study its properties and then we construct a hypergroup based on this hyperoperation. This hypergroup is presented for some classes of graphs.
    Keywords: Semihypergroup, hypergroup, graph, domonating set}
  • Mehdi Djahangiri

    The inherent feature of real-world data is uncertainty. If data is generated in valid experiments or standard collections, probability theory or fuzzy theory is a powerful tool for analyzing them. But data is not always reliable, especially when it is not possible to perform a reliable test or data collection multiple times. In this situations, referring to the beliefs of experts in the field in question is an alternative approach and uncertainty theory is a tool by which the beliefs of experts can be mathematically incorporated into the problem-solving structure. In this paper, we investigate the finding minimum weighted maximal matching with uncertain weights. For this purpose, we offer two methods. In the first method, by introducing the concept of chance constraint, we obtain model with definite coefficients. The second method is based on the concept of uncertain expected value. Finally, a numerical example for these two methods is presented.

    Keywords: Uncertainty theory, Graph, Maximal matching, Integer programming}
  • Gholam Hossein Fath-Tabar *

    Let G be a graph of order n and with the vertex set {v_1,v_2,…,v_n } and the edge set E(G). The adjancency matrix of G is an n×n matrix A(G) whose (i,j)-entry is 1 if v_i is adjacent to v_j and 0, otherwise. Assume that D(G) is the n×n diagonal matrix whose (i,i)-entry is the degree of v_i. The matrices L(G) = D(G) - A(G) and Q(G) = D(G) + A(G) are called the Laplacian matrix and signless Laplacian matrix of G, respectively. The signelss Laplacian eigenvalues of a graph are the roots of characteristic polynomial of the signless Laplacian matrix of it. In this paper, we obtained signless Laplacian spectrum of some special subgraphs of complete graph and then estimated some bounds for signless Laplacian Energy of some graphs.

    Keywords: Signless Laplacian Spectrum, Signless Laplacian Energy, Signless Laplacian Eigenvalues, Graph}
  • Deepika Rajoriya, D. Shukla *

    Assume a large microscopic internal bonding chemical structure of a substance designed like a Petersen graph where electrons are the vertices and edges representing the bonding energy levels in between them. For large structures, it is difficult to find out the average level of bonding energy between any pair of electron-proton microscopic structures. For a chemical scientist, it is a difficulty and a challenge both to find out what is the average amount of energy bounded between any subsequent pair of electron-proton bi-valent bond, trivalent bond, or tetravalent bond. This paper presents a sample-based estimation methodology for estimating the bonding energy mean value. A node-sampling procedure is proposed whose bias, mean-squared errors and other properties are derived. Results are supported by empirical studies. Findings are compared with particular cases and confidence intervals are used as a basic tool of comparison for robustness purposes.

    Keywords: Graph, Petersen Graph, Estimator, Bias, Mean Squared Error (MSE), Optimum Choice, Confidence intervals, Nodes (vertices): Pattern Imputation}
  • سعید صفائیان*، ثریا برزگر

    در این مقاله گراف پوچ‎ساز  (گروه‎های آبلی) بررسی خواهند شد. گراف پوچ‎ساز یک گروه آبلی مانند M  را با نماد G(M) نمایش می‎دهیم. در این راستا نشان خواهیم داد، گراف پوچساز M تهی است اگر و تنها اگر M≌ Z یا M یک گروه آبلی ساده باشد. علاوه بر این تمام گروه‎های آبلی متناهی- تولید شده که گراف پوچ‎ساز آن‎ها کامل، دوبخشی یا دوبخشی کامل هستند، مشخص خواهند شد. در مرجع [14] نویسندگان گراف مقسوم ‎علیه صفرگروه‎های آبلی را مطرح و مورد بررسی قرار دادند. در این مقاله ما الگوریتمی بر اساس نرم‎افزار میپل ارایه خواهیم داد که گراف مقسوم‎علیه صفر و گراف پوچ‎ساز یک گروه آبلی دوری را هم زمان رسم می‎کند.

    کلید واژگان: مدول, گراف, زیر مدول پوچ‎ساز, گراف‎های کامل, گراف‎های کامل دوبخشی}
    Saeed Safaeeyan*, Soraya Barzegar

    In [18], the author associated a graph to an R -module M which is precisely a generalization of annihilating ideal graph of a commutative ring, see [15] and [16]. Inasmuch as Abelian groups are precisely Z-modules, in this paper we relate an annihilating graph to an Abelian group , denoted by G(M) , and study this graph. We show that  G(M) is an empty graph if and only if either M≅Z or M is a simple Abelian group. Moreover, we show that G(M) is a finite graph if and only if M is a finite Abelian group. Among other things, we characterize Abelian groups for which their annihilating graphs are complete, bipartite or complete bipartite  graphs.

    Keywords: Modules, Abelian Groups, Annihilating graph, Graph}
  • Tien Chih*, Laura Scull

    In recent years several notions of discrete homotopy for graphs have been introduced, including a notion of ×-homotopy due to Dochtermann. In this paper, we define a ×-homotopy fundamental groupoid for graphs, and prove that it is a functorial ×-homotopy invariant for finite graphs. We also introduce tools to compute this fundamental groupoid, including a van Kampen theorem. We conclude with a comparison with previous definitions along these lines, including those built on polyhedral complexes of graph morphisms.

    Keywords: Graph, homotopy, groupoid, fundamental group}
  • مرضیه شمسی زاده*، محمد مهدی زاهدی، معصومه گلمحمدیان، خدیجه ابول پور

    هدف از مطالعه حاضر برقراری ارتباط بین گراف ها و تیوری اتوماتاست که ساختارهای مختلف ریاضی را نشان می دهد. از طریق بررسی برخی از خصوصیات یکی از این ساختارها ، سعی می کنیم برخی از خصوصیات جدید ساختار دیگر را پیدا کنیم. این امر منجر به بدست آوردن برخی خصوصیات ناشناخته خواهد شد. در ابتدا، یک اتوماتای جدید به نام اتوماتای حالت متناهی صفر تحمیلی با توجه به مفهوم مجموعه صفر تحمیلی تعریف می شود. نشان داده شده است که برای یک گراف داده شده, برای برخی مجموعه های صفر تحمیلی، اتوماتای حالت متناهی صفر تحمیلی مختلفی بدست می آید. علاوه بر این، زبان و خصوصیات بستاری اتوماتای حالت متناهی صفر تحمیلی، به ویژه؛ اجتماع, اتصال و اتصال سریالی مورد مطالعه قرار می گیرد. علاوه بر این، با در نظر گرفتن برخی از خصوصیات گرافها مانند مسیر بسته، اتصال و کامل, برخی از ویژگی های جدید برای اتوماتای حالت متناهی صفر تحمیلی ارایه شده است. بعلاوه، نشان داده شده است که هیچ گراف متناهی وجود ندارد که f بخشی از زبان اتوماتای آن باشد. در حقیقت، ثابت شده است که برای هر گراف داده شده، اتوماتای حالت متناهی صفر تحمیلی آن هیچ دنباله بسته حاوی تمام یالها را برای هر مجموعه صفر تحمیلی نشان نمی دهد، اما اگر گراف G یک دنباله بسته باشد که حاوی تمام یال ها باشد، اتوماتای حالت متناهی صفر تحمیلی آن دارای یک مسیر بسته ضعیف است که حاوی تمام یال ها است. برای روشن شدن این مفاهیم جدید چند مثال نیز آورده شده است.

    کلید واژگان: گراف, مجموعه صفر تحمیلی, اتوماتاف, اتوماتا گراف, زبان اتوماتا}
    M. Shamsizadeh *, M. M. Zahedi, M. Golmohamadian, KH. Abolpour

    The current study aims to establish a connection between graphs and automata theory, which apparently demonstrate different mathematical structures. Through searching out some properties of one of these structures, we try to find some new properties of the other structure as well. This will result in obtaining some unknown properties. At first, a novel automaton called zero-forcing (Z-F) finite automata is defined according to the notion of a zero-forcing set of a graph. It is shown that for a given graph and for some zero forcing sets, various Z-F-finite automata will be obtained. In addition, the language and the closure properties of Z-F-finite automata, in particular; union, connection, and serial connection are studied. Moreover, considering some properties of graphs such as the closed trail, connected and complete; some new features for Z-F-finite automata are presented. Further, it is shown that there is not any finite graph such that f be a part of the language of its Z-F-finite automata. Actually, it is proved that for every given graph, the Z-F-finite automata of it does not show any closed trail containing all edges for every zero forcing set, but if the graph G has been a closed trail containing all edges, then the Z-F-finite automata of it has a weak closed trail containing all edges. Some examples are also given to clarify these new notions.

    Keywords: Graph, Zero forcing set, automata, graph automata, Language of automata}
  • Mobina Ghorbaninejad *
    In 1972, within a study of the structure-dependency of total π-electron energy (E), it was shown that E depends on the sum of squares of the vertex degrees of the molecular graph (later named first Zagreb index), and thus provides a measure of the branching of the carbon-atom skeleton. Topological indices are found to be very useful in chemistry, biochemistry and nanotechnology in isomer discrimination, structure–property relationship, structure-activity relationship and pharmaceutical drug design. In chemical graph theory, a topological index is a number related to a graph which is structurally invariant. One of the oldest most popular and extremely studied topological indices are well–known Zagreb indices. In a (molecular) graph G, the Zagreb topological index is equal to the sum of squares of the degrees of vertices of G and the Zagreb coindex is defined as the sum of a graph’s vertex degrees which is not adjacent. In this paper, we obtain the Zagreb coindex of four operations on graphs.
    Keywords: Graph, Zagreb–index, F–sum, Zagreb-coindex}
  • Fawwaz Doujan Wrikat*

    The line graph of the graph $Gamma$ denoted by $L(Gamma)$ is a graph with a vertex set consists of the sets of edges of $Gamma$ and two vertices are adjacent in $L(Gamma)$ if they are incident in $Gamma$. In this article, we discuss and determine the effect of operations on the line graphs of simple graphs.

    Keywords: graph, simple, line graph, operations}
  • J. Amjadi *, R. Khoeilar, A. Alilou
    Let R be a commutative ring with non-zero identity. The annihilator-inclusion ideal graph of R , denoted by ξR, is a graph whose vertex set is the of allnon-zero proper ideals of $R$ and two distinct vertices $I$ and $J$ are adjacentif and only if either Ann(I) ⊆ J or Ann(J) ⊆ I. In this paper, we investigate the basicproperties of the graph ξR. In particular, we showthat ξR is a connected graph with diameter at most three, andhas girth 3 or ∞. Furthermore, we determine all isomorphic classes of non-local Artinian rings whose annihilator-inclusion ideal graphs have genus zero or one.
    Keywords: annihilator, graph, annihilator-inclusion ideal graph}
  • S. S. Salehi Amiri, A.R. Khalili Asboei*

    Let $G$ be a finite group. The main supergraph $mathcal{S}(G)$ is a graph with vertex set $G$ in which two vertices $x$ and $y$ are adjacent if and only if $o(x) mid o(y)$ or $o(y)mid o(x)$. In this paper, we will show that $Gcong L_{2}(q)$ if and only if $mathcal{S}(G)cong mathcal{S} (L_{2}(q))$, where $q$ is a prime power. This work implies that Thompsonchr('39')s problem holds for the simple group $L_{2}(q)$.

    Keywords: Graph, Main supergraph, Thompson's problem}
  • محمدرضا عبودی*

    فرض کنید G گرافی ساده با ریوس v_1,..., v_n است. منظور از ماتریس اتصال G که آنرا با A(G) نشان می دهیم ماتریسی است n×n بطوریکه درایه (i,j) آن را 1 قرار می دهیم اگر v_i به v_j وصل باشد, در غیر اینصورت قرار می دهیم 0. منظور از مقادیر ویژه G یعنی مقادیر ویژه A(G). فرض کنید λ_1 (G)≥λ_2 (G)≥⋯≥λ_n (G) مقادیر ویژه G هستند. در این مقاله نتایجی را در مورد گرافهایی که دارای حداکثر سه مقدار ویژه نامنفی هستند, بدست می آوریم. بویژه دو رده زیر از گرافها را مورد مطالعه قرار می دهیم: 1) گرافهایی مانند G بطوریکه λ_1 (G)>0 , λ_2 (G)>0 , λ_3 (G)=0 و λ_4 (G)0 , λ_2 (G)>0 , λ_3 (G)>0 و λ_4 (G)

    کلید واژگان: گراف, مقادیر ویژه گرافها, ماتریس اتصال گرافها}
    mohammadReza Aboudi *

    Let G be a simple graph with vertices v_1,..., v_n. The adjacency matrix of G denoted by A(G) is an n×n matrix whose the entry (i,j) is 1 if v_i and v_j are adjacent and is zero otherwise. By the eigenvalues of G we mean the eigenvalues of A(G). Let λ_1 (G)≥λ_2 (G)≥⋯≥λ_n (G) be the eigenvalues of G. In this paper we obtain some results related to graphs with at most three non-negative eigenvalues. We obtain all non-connected graphs with this property. In addition, we find some families of connected graphs with this property. In particular we study two following families of graphs:1. Graphs such as G with exactly two positive eigenvalues and one zero eigenvalues. In other words graphs such as G with λ_1 (G)>0 , λ_2 (G)>0 , λ_3 (G)=0 and λ_4 (G)0 , λ_2 (G)>0 , λ_3 (G)>0 and λ_4 (G)

    Keywords: Graph, eigenvalues of graphs, adjacency matrix of graphs}
  • Donnie Kasyoki, Paul Oleche *

    Let $G$ be a finite group and $cd(G)$ denote the character degree set for $G$. The prime graph $DG$ is a simple graph whose vertex set consists of prime divisors of elements in $cd(G)$, denoted $rho(G)$. Two primes $p,qin rho(G)$ are adjacent in $DG$ if and only if $pq|a$ for some $ain cd(G)$. We determine which simple 4-regular graphs occur as prime graphs for some finite nonsolvable group.

    Keywords: Nonsolvable group, character, character degree, graph, prime graph}
نکته
  • نتایج بر اساس تاریخ انتشار مرتب شده‌اند.
  • کلیدواژه مورد نظر شما تنها در فیلد کلیدواژگان مقالات جستجو شده‌است. به منظور حذف نتایج غیر مرتبط، جستجو تنها در مقالات مجلاتی انجام شده که با مجله ماخذ هم موضوع هستند.
  • در صورتی که می‌خواهید جستجو را در همه موضوعات و با شرایط دیگر تکرار کنید به صفحه جستجوی پیشرفته مجلات مراجعه کنید.
درخواست پشتیبانی - گزارش اشکال