multi-objective programming
در نشریات گروه فنی و مهندسی-
Journal of Advances in Industrial Engineering, Volume:58 Issue: 2, Summer and Autumn 2024, PP 391 -412The selection of human assets for teams significantly impacts the success and profitability of projects. Industrial Revolution 4.0 (4IR) and the post-COVID-19 conditions impose requirements on virtual collaboration, bots-human collaboration, and teleworking projects. The matrix-structured organization faces challenges in this process because it requires weighing various criteria from distinct perspectives. Accordingly, an inappropriate team selection process can result in high costs or failure. Team member competency criteria are identified based on 4IR, in this study. The study also evaluates the theory of generations based on the fact that project teams consist of members from different generations, each with unique characteristics. To this end, a multi-objective allocation model is presented that maximizes competency level while minimizing costs, considering the organizational structure, the 4IR, the post-COVID-19 era condition, and the generation theory. The study attempts to provide decision-makers in multiple-project organizations with a realistic picture to make a trade-off between the cost and competency level of teams. The linear best-worst method (BWM) is used to weigh the competency criteria. Regarding the developed bi-objective model, the Augmented ε- Constraint (AUGMECON) method is utilized to solve the problem. The model is also validated using the Iran Mall project. The findings indicate that younger generations have almost 1.3 more competence scores in virtual communication than older generations. Also, the organization should increase expenditures by 7.1% to reach the highest level of competency.Keywords: Project Management, Theory Of Generations, Best-Worst Method, The COVID-19, Virtual Collaboration, Multi-Objective Programming, Human Resource Management
-
هدف
به طورکلی انتخاب یک سبد سرمایه گذاری با بازدهی مناسب که درعین حال مطمئن و قابل نقدشدن باشد، از مسایل مطرح شده در دهه های اخیر می باشد. در پژوهش حاضر به پیشنهاد یک رویکرد مناسب با استفاده از مقادیر ایده آل و ضد ایده آل، مقادیر آرمانی و حداکثر انحرافات ممکن از هر آرمان، اهداف فازی و برنامه ریزی آرمانی فازی و هم چنین وزن دهی اهداف با استفاده از نظر خبرگان درصدد انتخاب سبد سرمایه گذاری در بازار ارزهای دیجیتال برمی آید.
روش شناسی پژوهش:
در این پژوهش رویکرد جدیدی در زمینه انتخاب سبد سرمایه گذاری با توجه به داده های غیرقطعی و برنامه ریزی غیرقطعی چندهدفه، ارایه شده و درنهایت رویکرد پیشنهادی مذکور در بازار ارزهای دیجیتال به جهت انتخاب سبد سرمایه گذاری پیاده سازی می شود.
یافته هانتایج پژوهش حاضر نشان داد که سبد سرمایه گذاری مدل پیشنهادی نسبت به مدل پایه نه تنها بازدهی بالاتری را در پی داشته، بلکه قابلیت نقدشوندگی بالاتر و هم چنین کنترل ریسک بهتری را در پی دارد. به عبارت دیگر مدل پیشنهادی در تمامی اهداف مورد بررسی، عملکرد بهتری را نسبت به مدل پایه مورد بررسی، ارایه داد.
اصالت/ارزش افزوده علمی:
به عنوان وجوه تمایز مدل پیشنهادی تحقیق حاضر می توان به 1- ساخت و استفاده از توابع توزیع فازی و محاسبه مقادیر آرمانی و فواصل مورد انتظار برای تمامی اهداف موردنظر با توجه به شرایط بازار مورد بررسی تحقیق با استفاده از مدل سازی ساده ریاضی، 2- استفاده از تجربه خبرگان بازارهای مالی در مدل برنامه ریزی به جهت انتخاب پرتفولیو سرمایه گذاری مناسب در بازارهای مالی نوظهور، 3- ارایه رویکردی به جهت محاسبه ریسک پرتفولیو در شرایط کمبود اطلاعات محیط مساله با استفاده از تئوری نظریه فازی، 4- توسعه روش مبنا-معیار فازی به جهت وزن دهی اهداف مورد بررسی در مساله با توجه به درنظر گرفتن تجربه خبرگان بازار های مالی و 5- مدل سازی ساده، درنظر گرفتن مقادیر فازی بازه ای در مدل و دارای قابلیت استفاده برای تمامی افراد با سطوح دانش سرمایه گذاری متفاوت اشاره کرد.
کلید واژگان: ارزهای دیجیتال، انتخاب سبد سرمایه گذاری، برنامه ریزی چند هدفه، توابع رضایت، فازی بازه ایPurposeGenerally, selecting an investment portfolio with appropriate returns that is also secure and auditable has been one of the issues raised in recent decades. For this purpose, the present research proposes an appropriate approach using ideal and anti-ideal values, ideal values, as well as maximum deviations of each objective, considering the sample in the examined market, fuzzy goals, interval fuzzy values for each asset, and their combination with satisfaction functions, fuzzy ideal planning, and weighting objectives using expert decision-makers' opinions, as well as the development of fuzzy basic weighting method. It seeks to select an investment portfolio in the digital currency market.
MethodologyIn this research, a new approach to selecting an investment portfolio based on uncertain data and multi-objective uncertain planning is proposed, and ultimately, the proposed approach is implemented in the digital currency market for portfolio selection.
FindingsThe results of the present study show that the proposed model of investment portfolio compared to the base model not only led to higher returns but also had higher audibility and better risk control. In other words, the proposed model outperformed the base model in all the objectives under study.
Originality/Value:
As distinguishing features of the proposed model of this research, one can mention: 1) constructing and using fuzzy distribution functions and calculating ideal values and expected ranges for all desired objectives considering the conditions of the examined market research using simple mathematical modeling, 2) utilizing the experience of financial market experts in planning model for selecting suitable investment portfolios in emerging financial markets, 3) presenting an approach to calculating portfolio risk in conditions of information scarcity in the problem environment using fuzzy theory, 4) development of the fuzzy benchmark-criterion method for weighting the objectives under study in the problem considering the expertise of financial market experts, and 5) simple modeling, considering interval fuzzy values in the model, and being usable for all individuals with different levels of investment knowledge.
Keywords: Digital Currencies, Portfolio Selection, Multi-Objective Programming, Satisfaction Functions, Fuzzy Interval -
International Journal of Supply and Operations Management, Volume:11 Issue: 3, Summer 2024, PP 367 -389Population growth has led to more food demand, especially meat. Designing a supply chain, especially a meat one, is complicated due to the uncertainty of food demand and the perishability of meat. To this aim, we develop a multi-objective mixed-integer linear programming model. The developed model contains four echelons, i.e., farms, slaughterhouses, retailers, and customers. The first objective function minimizes the total costs, the second objective minimizes the distribution time, and the third objective minimizes the network's non-resiliency simultaneously. An enhanced version of the augmented ε-constraint method is employed to solve the suggested model, and a set of Pareto–optimal solutions is found. This study also explores the impact of using the robust possibilistic approach in modeling a supply chain network under uncertainty. Numerical experiments demonstrate that the robust optimization approach brings significantly superior outcomes in comparison to the conventional deterministic approach, and the model provides a practical and valuable tool for real-world supply chain challenges.Keywords: Meat Supply Chain, Resiliency, Uncertainty, Improved Augmented Ε-Constraint, Multi-Objective Programming, Robust Possibilistic Approach
-
Journal of Quality Engineering and Production Optimization, Volume:9 Issue: 1, Winter-Spring 2024, PP 149 -186
In line with growing global concerns regarding environmental and social issues, supply chaincorporations are improving their environmental and social performances. The optimal design of a closedloop supply network must conceive various aspects, leading to a multi-objective problem. This study developsa mixed-integer linear programming model to provide an integrated supply network with a particular focuson sustainability. Besides cost efficiency, energy consumption, and job creation are incorporated asadditional objective functions. This article uniquely introduces the training of supply chain employees as partof the developed model to address social responsibility. The Non-Dominated Sorting Genetic Algorithm-II(NSGA-II) and Multiple Objective Particle Swarm Optimization (MOPSO) are employed to solve the multiobjective problem. The numerical examples for cost and energy values are based on real data. The resultsdemonstrate the significant effect of returned product recovery on cost reduction in the network and changesin energy consumption at different levels. NSGA-II and MOPSO yield a set of optimal solutions that increasethe flexibility of decision-makers. Indeed, a set of Pareto solutions reveals a conflict between the objectivefunctions and allows the network to be highly effective in decision-making under different conditions andpolicies.
Keywords: Multi-Objective Programming, MOPSO, NSGA-II, Social Responsibility, Sustainable Closed-Loop Supply Chain Design -
Journal of Optimization in Industrial Engineering, Volume:16 Issue: 34, Winter and Spring 2023, PP 1 -7In this paper, we present a suitable extension of the approach described by Pieume et al. (2011) for solving multi-follower multi-objective linear bilevel programming problems. This problem is a special case of multi-follower bilevel linear programming problems, where each decision maker possesses several objective functions that in some cases, conflict with one another. We construct a multi-objective linear programming problem. Furthermore, we show that the multi-follower multi-objective linear bilevel programming problem can be reduced to optimize the top-level multi-objective linear programming problem over an efficient set. The proposed approach uses a Pareto-filter scheme, and obtains an approximate discrete representation efficient set unlike the fuzzy approaches that only obtain one efficient solution. Ultimately, a numerical example is presented to illustrate the efficiency of the proposed approach.Keywords: Multi-objective programming, Multi-follower linear bilevel programming, Pareto-optimal solutions, Feasible set
-
تولید کمپوست از مواد زاید دارای سابقه طولانی می باشد و از دیر باز از روش های متفاوتی برای تولید کمپوست استفاده شده است. علیرغم اهمیت بالای کمپوست به عنوان کود ارگانیک برای باروری محصولات کشاورزی، مرور ادبیات زنجیره تامین تولید کمپوست نشان می دهد که این مساله چندان مورد توجه قرار نگرفته است. از طرف دیگر،کیفیت کمپوست تولید شده بسیار حایز اهمیت می باشد. در این مقاله با یک نگاه نوآورانه در قالب روش تحلیل سلسله مراتبی به آن پرداخته شده است. از این رو مقاله حاضر با ارایه یک مدل چند هدفه به چگونگی فرآیند تولید کمپوست و طراحی زنجیره تامین آن و بررسی کیفیت کمپوست، هزینه های کمپوست و همچنین کاهش آلایندگی زیست محیطی گازهای گلخانه ای حاصل از آن پرداخته است. برای حل مدل چند هدفه از روش های مجموع وزن دهی شده و اپسیلون محدودیت استفاده شده است. مدل برای یک مطالعه موردی حل و کارایی مدل ارایه شده بررسی و با توجه به تحلیل حساسیت های انجام گرفته، بینش های مفید مدیریتی در ارتباط با تعیین ظرفیت بهینه تامین کنندگان و تولید کنندگان، بهبود کارایی زنجیره تامین کمپوست با در نظر گرفتن تابع هدف کیفیت کمپوست، تعیین وسیله حمل و نقل مناسب با در نظر گرفتن اولویت های مدیریتی در مورد هزینه کل زنجیره تامین و الزامات قانونی مربوط به انتشار آلاینده ها و تعیین روش تولید بهینه کمپوست استخراج شده است.کلید واژگان: طراحی زنجیره تامین کمپوست، برنامه ریزی چند هدفه، کیفیت کمپوست، مجموع وزن دهی شده، اپسیلون محدودیتFor a long time, waste materials have been used to produce compost by different methods. Despite the high importance of compost as an organic fertilizer for the fertility of agricultural products, the literature review on the compost supply chain shows that this issue has not received much attention. On the other hand, the quality of the compost produced is very important, which is considered by an innovative glance in the form of analytical hierarchical analysis method, in this paper. Therefore, a multi-objective model proposed which discusses the compost production process, compost supply chain design, compost quality, compost supply chain costs and furthermore the reduction of greenhouse gases emission. The multi-objective model is solved by weighted sum and epsilon constraint methods. The model is implemented for a case study to discover the efficiency of the proposed model. According to the sensitivity analyses, useful managerial insights regarded to determining the optimal capacity of suppliers and producers, improving the efficiency of the compost supply chain by considering the quality objective function, determining the appropriate transportation equipment taking into account the management priorities based on the entire supply chain cost and the legal requirements based on the emission of pollutants and determining the optimal method of compost production are extracted.Keywords: compost supply chain design, Multi objective programming, compost quality, Weighted Sum, Epsilon constraint
-
Journal of Quality Engineering and Production Optimization, Volume:7 Issue: 1, Winter-Spring 2022, PP 227 -243This study proposes a novel sustainable multi-objective agri-food supply chain in Mushroom industry due to the lack of economic, environmental, and social aspects that the prior studies neglected. The proposed study examines a four-echelon model including suppliers, intermediate manufacturers, final manufacturers and markets (plus secondary market). The model is also validated to provide insights into a relevant industry. The results indicated that investment in the oyster mushroom would lead to economic and social improvements. Moreover, investing in the button mushroom was observed to improve all three sustainability aspects. In the case of investing in the oyster and button mushroom, increasing the capacity of compost factories and sales price would lead to different results. Furthermore, the profitability of the supply chain was found to rise when waste is sold in the secondary market. Therefore, managers can adopt different strategies under different circumstances based on their priorities to raise supply chain profitability.Keywords: green supply chain, linear programming, Multi-objective programming, Sustainable agri-food supply chain, Uncertain product demand, yield
-
هدف
در حالت کلی، تعیین جواب های موثر مدل برنامه ریزی کسری خطی چند هدفه بازه ای(IMOLFP) یک مسئله PN- سخت است. تاکنون روش کارآمدی برای تعیین جواب های موثر در این زمینه ارایه نشده است. بنابراین نیاز به یک روش مناسب برای تعیین جواب های موثر IMOLFP وجود دارد. ما می خواهیم الگوریتم هایی را معرفی کنیم که برای اولین بار جواب های موثر قوی و ضعیف IMOLFP بدست آیند.
روش شناسی پژوهشدر این مقاله، دو الگوریتم معرفی می کنیم به طوری که در یکی، شدنی قوی نامعادلات و در دیگری، شدنی ضعیف نامعادلات در نظر گرفته می شود (یک دستگاه نامعادلات، شدنی قوی است اگر و تنها اگر کوچک ترین ناحیه آن شدنی باشد و یک دستگاه نامعادلات، شدنی ضعیف است اگر و تنها اگر بزرگ ترین ناحیه آن شدنی باشد). توابع هدف IMOLFP را به توابع هدف خطی حقیقی تبدیل نموده و سپس به یک مدل برنامه ریزی خطی تک هدفه تبدیل می کنیم و در هر تکرار، محدودیت جدید به ناحیه شدنی اضافه می کنیم. با انتخاب یک نقطه دلخواه از ناحیه شدنی به عنوان نقطه شروع و استفاده از الگوریتم های پیشنهادی، جواب های موثر قوی و ضعیف IMOLFP را بدست می آوریم.
یافته هادر هر دو الگوریتم پیشنهادی، با انتخاب نقاط دلخواه جواب موثر بدست می آوریم و با تغییر نقطه ی شروع، یک نقطه ی جدید به عنوان جواب موثر بدست می آوریم.
اصالت/ارزش افزوده علمیدر این پژوهش توانسته ایم برای اولین بار جواب های موثر قوی و ضعیف مدل IMOLFP بدست آوریم.
کلید واژگان: برنامه ریزی چند هدفه، برنامه ریزی کسری خطی بازه ای، جواب موثر قوی، جواب موثر ضعیفPurposeDetermining efficient solutions of the Interval Multi Objective Linear Fractional Programming (IMOLFP) model is generally an NP-hard problem. For determining the efficient solutions, an effective method has not yet been proposed. So, we need to have an appropriate method to determine the efficient solutions of the IMOLFP. For the first time, we want to introduce algorithms in which the strongly and weakly efficient solutions of the IMOLFP are obtained.
MethodologyIn this paper, we introduce two algorithms such that in one, strongly feasible of inequalities and in the other, weakly feasible of inequalities are considered (A system of inequalities is strongly feasible if and only if the smallest region is feasible, and a system of inequalities is weakly feasible if and only if the largest region is feasible). We transform the objective functions of the IMOLFP to real linear functions and then convert to a single objective linear model and then in each iteration of the algorithm, we add some new constraints to the feasible region. By selecting an arbitrary point of the feasible region as start point and using the proposed algorithms, we obtain the strongly and weakly efficient solutions of the IMOLFP.
FindingsIn both proposed algorithms, we obtain an efficient solution by selecting the arbitrary points, and by changing the starting point, we obtain a new point as the efficient solution.
Originality/ValueIn this research, for the first time, we have been able to obtain the strongly and weakly efficient solutions of the IMOLFP.
Keywords: Multi Objective Programming, Interval linear fractional programming, Strongly efficient solution, Weakly efficient solution -
International Journal of Industrial Engineering and Productional Research, Volume:32 Issue: 2, Jun 2021, PP 221 -240
So far, numerous studies have been developed to evaluate the performance of “Decision-Making Units (DMUs)” through “Data Envelopment Analysis (DEA)” and “Network Data Envelopment Analysis (NDEA)” models in different places, but most of these studies have measured the performance of DMUs by efficiency criteria. The productivity is considered as a key factor in the success and development of DMUs and its evaluation is more comprehensive than efficiency evaluation. Recently, studies have been developed to evaluate the productivity of DMUs through the mentioned models but firstly, the number of these studies especially in NDEA models is scarce, and secondly, productivity in these studies is often evaluated through the “productivity indexes”. These indexes require at least two time periods and also the two important elements of efficiency and effectiveness in these studies are not significantly evident. So, the purpose of this study is to develop a new approach in the NDEA models using “Multi-Objective Programming (MOP)” method in order to measure productivity of DMUs through efficiency and effectiveness “simultaneously, in one stage, in a period, and interdependently”. “Simultaneous and single-stage” study provides the advantage of sensitivity analysis in the model. One case study demonstrates application of the proposed approach in the branches of a Bank. Using proposed approach revealed that it is possible for a branch to be efficient by considering its subdivisions separately but not be efficient by considering the conjunction between its subdivisions. In addition, a branch may be efficient by considering the conjunction between its subdivisions but not be productive. Efficient branches are not necessarily productive, but productive branches are also efficient.
Keywords: Productivity, Effectiveness, Efficiency, Productivity indexes, Network DEA, Multi-Objective Programming -
International Journal of Industrial Engineering and Productional Research, Volume:31 Issue: 2, Jun 2020, PP 217 -229
Sustainable supply chain networks have attracted considerable attention in recent years as a means of dealing with a broad range of environmental and social issues. This paper reports a multi-objective mixed-integer linear programming (MILP) model for use in the design of a sustainable closed loop supply chain network under uncertain conditions. The proposed model aims to minimize total cost, optimize environmental impacts of establishment of facilities, processing and transportation between each level as well as social impacts including customer satisfaction. Due to changes in business environment the uncertainty existed in the research problem, in this paper the chance constrained fuzzy programming approach applied to cope with uncertainties in parameter of the proposed model. Then the proposed multi-objective model solves as single-objective model using LP-metric method.
Keywords: Supply chain management, Sustainable supply chain, Closed-loop supply chain, Fuzzy optimization, Multi objective programming -
مدل تخصیص بودجه سههدفه نگهداری روسازی راه با استفاده از روش ترکیبی بهینهسازی پارامتریک و توابع حدداریکی از مسائل مهم در مدیریت روسازی راه، مساله تخصیص بودجه در قسمت های مختلف شبکه به منظور نگهداری و اصلاح وضعیت روسازی است. در این مقاله، مدلی سه هدفه برای این منظور ارایه شده است، که تابع هدف های آن عبارتند از: 1) کمینه کردن درصد قسمت هایی از شبکه که در حالت بحرانی و بدتر از بحرانی (غیر از بدترین حالت) قرار دارند، و می بایست برای آن ها اقدامات بهسازی انجام داد تا به وضعیت مطلوب برسند؛ 2) کمینه کردن درصد قسمت هایی از شبکه که در بدترین حالت قرار دارند، و برای رساندن آن به وضعیت مطلوب باید اقدامات نوسازی انجام داد؛ و 3) کمینه کردن مجموع هزینه انجام شده به خاطر اصلاحات صورت گرفته در کل دوره برنامه ریزی. برای حل مدل سه هدفه پیشنهادشده روشی ترکیبی با استفاده از روشه های چندهدفه بهینه سازی پارامتریک و توابع حددار ارایه شده است. نتایج بکارگیری مدل نشان می دهد که علیرغم تصور ذهنی در نگاه اول، اهداف اول و دوم تحت شرایطی دارای تضاد هستند و افزایش یکی ممکن است باعث کاهش دیگری شود، و بنابراین این دو هدف را نمی توان در غالب یک هدف واحد در نظر گرفت. یکی از خصوصیات مهم روش ارایه شده این است که پیش بینی وضعیت روسازی از روش زنجیره مارکوف در مدل بهینه سازی گنجانده شده است و این موضوع باعث می شود که از پیش بینی و تخصیص سرمایه به صورت جداگانه و در نتیجه رسیدن به حل های بهینه محلی پرهیز شود.کلید واژگان: برنامه ریزی چندهدفه، تخصیص بودجه، تعمیر و نگهداری روسازی راه، زنجیره مارکوفOne of the important issues in road pavement management is the allocation of resource in different parts of the network in order to maintain the pavement conditions at desired levels. In this paper, a tri-objective model is proposed for this purpose, the objective functions of which are: 1) to minimize the proportion of the network that are in “critical” and worse-critical conditions (other than the “worst” condition), on which some improvement measures should be performed to reach a desired condition; (2) to minimize the proportion of the network that is in “worst” condition, and, in order to bring it to a desired condition, it should take renovation measures; and (3) to minimize the total cost incurred due to the maintenance and rehabilitation measures made during the entire planning period. To solve the tri-objective model, a hybrid method is proposed using multi-objective parametric optimization and ε-constraint methods. The results of the application of the model show that despite the mental imagination at first glance, the first and second objective functions may have conflict, so that increasing one of them may lead to decreasing the other; therefore, these two objectives cannot be considered together as a single objective function. One of the important features of the proposed method is that the Markov Chain process model, as the prediction tool for the pavement condition, is incorporated into the optimization model. This makes the pavement condition prediction and resource allocation simultaneously and prevents achieving local optimal solutions.Keywords: Multi-objective Programming, Resource Allocation, Pavement Maintenance, Rehabilitation, Markov Chain Process
-
Scientia Iranica, Volume:26 Issue: 6, Nov-Dec 2019, PP 3695 -3711This paper presents a novel formulation of the integrated bi-objective problem of project selection and scheduling. The first objective is to minimize the aggregated risk by evaluating the expected value of schedule delay and the second objective is to maximize the achieved benefit. To evaluate the expected aggregated impacts of risks, an objective function based on the Bayesian Networks is proposed. In the extant mathematical models of the joint problem of project selection and scheduling, projects are selected and scheduled without considering the risk network of the projects indicating the individual and interaction effects of risks impressing the duration of the activities. To solve the model, two solution approaches have been developed, one exact and one metaheuristic approach. Goal Programming method is used to optimally select and schedule projects. Since the problem is NP hard, an algorithm, named GPGA, which combines Goal Programming method and Genetic Algorithm is proposed. Finally, the efficiency of the proposed algorithm is assessed not only based on small size instances but also by generating and testing representative datasets of larger instances. The results of the computational experiments indicate that it has acceptable performance to handle large size and more realistic problems.Keywords: Project selection, scheduling, Risk analysis, Bayesian Networks, multi-objective programming, Genetic Algorithm
-
In this paper, we introduce a two stages model for allocation of injuries and medical supplies to medical centers. In the first stage a multi objective mathematical model allocates injured people from the affected neighborhood to medical centers. In the second stage a single objective linear model allocates medical supplies from the supply points to medical centers. The first stage’s objective is simultaneously minimizing the total relief time and costs and maximizing the level of matching the type of injury with the specialized field of the medical centers those injuries are sent. The second stage’s objective is to minimize the costs of allocating medical supplies to medical centers. An integrated model that combines the two previous models is presented and comparing the results with the two stages model. Proposed models are applied to one of the districts of Tehran to demonstrate their effectiveness. The case study includes two affected neighborhood and four medical centers and three supply points. ϵ-constraint method is used to produce the Pareto optimal solutions in a MOMP.
Keywords: Emergency condition, Mathematical Modeling, assignment, Multi-objective Programming, ϵ-constraint method -
Scientia Iranica, Volume:26 Issue: 4, Jul-Agust 2019, PP 2524 -2540The purpose of the current study is to select suppliers and determine their order allocation in a way that the performance of the sustainability of the supply process gets optimized on the whole. In this research, after reviewing the literature and investigating the supply chain of the case study (Iran Khodro’s supply chain) through Delphi method, a set of evaluation criteria related to the performance of the suppliers in economical, social and environmental terms was identified. In the next stage, by using the identified criteria, the multi-objective mathematical integer programming was presented to solve the problems of suppliers’ selection and order allocation. The suggested mathematical programming in this research is designed to be multi-product, single-period and multiple sourcing. Fuzzy TOPSIS method is applied to calculate the qualitative parameters that are used in the suggested mathematical programming. Ultimately, the mathematical model suggested in the research will be solved by two methods, i.e. Epsilon Constraint Method and Weighted Sum Method. Moreover, the total value of the sustainable purchasing (TVSP) will be calculated for both cases. Comparing these two methods indicates that in this research the results of weighted sum method are better than those epsilon constraint method.Keywords: Sustainable Supplier Selection, Order allocation, Fuzzy TOPSIS, multi-objective programming, Epsilon Constraint Method, Weighted Sum Method
-
Journal of Optimization in Industrial Engineering, Volume:12 Issue: 26, Summer and Autumn 2019, PP 149 -154In this research, a hierarchical location-allocation problem is modeled in a queue framework. The queue model is considered as M/M/1/k, in which system capacity is finite, equals to k. This is the main contribution of the current research. Customer's enters to the system in order to find the service according to a Poisson. In this problem, the hierarchical location-allocation model is considered in two levels. Also, the model has two objective functions: maximizing the total number of demand coverage and minimizing the waiting time of customers in queues to receive services. After modeling and verifying the validity of the presented model, it is solved using NSGA II and MOPSO meta-heuristics.Keywords: Location-Allocation Problems, Hierarchical Models, Multi-objective programming, Taguchi method, NSGA-II Algorithm, M-M-m Queuing Model
-
با پیشرفت روزافزون دانش اقتصاد و رشد پرشتاب فناوری، دارایی های فکری بیش ازپیش در کانون توجه مدیران سرمایه گذاری شرکت ها و پژوهشگران شرکت قرار گرفته اند. شاید بتوان حقوق ثبت اختراع را مهم ترین دارایی فکری برشمرد و یکی از دلایل این امر تحقیقات فراوانی است که در حوزه ابعاد گوناگون این حقوق صورت گرفته است. حق ثبت اختراع امکان استفاده از فناوری را به صورت انحصاری در مدت محدود (اغلب به مدت بیست سال) برای دارنده آن فراهم می آورد. از آنجا که بسیاری از شرکت های صنعتی و خدماتی برای حفظ مزیت های رقابتی خود و نیز رشد پایدار کسب وکار نیازمند به کسب فناوری های نوین از طریق خرید حقوق ثبت اختراع هستند، مساله ارزیابی حقوق ثبت اختراع به چالش جدی در عرصه فناوری مبدل شده است. در این پژوهش مدلی برای ارزیابی و رده بندی حق ثبت اختراع بر مبنای روش های برنامه ریزی چندمعیاره ارائه شده است و سپس مدل مذکور جهت تصمیم گیری درباره انتخاب فناوری های مرتبط با تلفن همراه اجرایی شده است. در پژوهش حاضر، انتخاب یک فناوری از میان چهار فناوری: (1) نمایشگر دوگانه، (2) ردیابی گوشی گم شده، (3) امنیت ارتباطات بی سیم و (4) بانکداری از راه دور صورت گرفته است. اجرای مدل با لحاظ چهار معیار اصلی: (1) جوهره فناوری، (2) هزینه فناوری، (3) بازار محصول و (4) بازار فناوری منجر به انتخاب فناوری امنیت بی سیم از میان این 4 فناوری شده است. همچنین صحت نتیجه به دست آمده حاصل از اجرای مدل پژوهش به کمک روش الکتر (تسلط تقریبی) تایید شده است.کلید واژگان: مدیریت فناوری، رده بندی فناوری، ارزش گذاری حق ثبت اختراع، فرایند تحلیل سلسله مراتبی، برنامه ریزی چندهدفه، روش الکترWith the advent of growing knowledge of the economy and the rapid growth of technology, intellectual property has become the focus of attention of corporate investment managers and researchers. Patent are considered to be the most important intellectual asset, and one of the reasons for this is the extensive research that has been done on the various dimensions of these rights. The patent provides the possessor with the possibility to use the technology exclusively for a limited period (often twenty years). Since many industrial and service companies need to acquire new technologies by the purchase of patent rights to maintain their competitive advantage and sustained business growth, the issue of patent assessment has become a serious challenge in the field of technology. In this research, a model for evaluating and ranking patents based on multi-criteria programming methods is presented and then the resulting model is implemented in a cell phone company. The company is required to choose a technology from four technologies: (1) a dual display, (2) missing phone tracking, (3) wireless communications security, and (4) remote banking to develop its products. The implementation of the model is based on four main criteria: (1) the essence of technology, (2) the cost of technology, (3) the product market, and (4) the technology market in the company led to the choice of wireless security technology. Also the accuracy of the result obtained from the implementation of the research model has been confirmed by the method of ELECTRE.Keywords: Technology Management, Technology Prioritization, Patent Valuation, Analytic Hierarchy Process, Multi-objective Programming, ELECTRE Method
-
This paper proposes an innovative procedure of finding efficient facility location–allocation (FLA) schemes, integrating data envelopment analysis (DEA) and a multi-objective programming (MOP) model methodology. FLA decisions provide a basic foundation for designing efficient supply chain network in many practical applications. The procedure proposed in this paper would be applied to the FLA problems where various conflicting performance measures are considered. The procedure requires that conflicting performance measures classified as inputs to be minimized, or outputs to be maximized. Solving an MOP problem generates diverse alternative FLA schemes along with multi-objective values. DEA evaluates these schemes to generate a relative efficiency score for each scheme. Then, using stratification DEA, all of these FLA schemes are stratified into several levels, from the most efficient to the most inefficient levels. A case study is presented to demonstrate the effectiveness and efficiency of the proposed integrating method. We observe that the combined approach in this paper performs well and would provide many insights to academians as well as practitioners and researchers.
Keywords: Facility location, allocation, Data envelopment analysis, Multi-objective programming, Performance measures, Relative efficiency score -
Journal of Modern Processes in Manufacturing and Production, Volume:8 Issue: 1, Winter 2019, PP 73 -90Data envelopment analysis (DEA) is a nonparametric approach to estimate relative efficiency of Decision Making Units (DMUs). DEA is one of the best quantitative approaches and balanced scorecard (BSC) is one of the best qualitative methods to measure efficiency of an organization. Since simultaneous evaluation of network performance of the quad areas of BSC model is considered as a necessity and separate use of DEA and BSC is not effective and leads to miscalculation of performance, integrated DEA-BSC model is applied. Regarding to multi-objective nature of the proposed model, two techniques including goal programming and weighted average method are used to solve such problems. At the end of the study, based on data relating to indexes of quad areas of BSC model, the results of the mentioned methods are compared. Besides assessing validation of the proposed model, the overall efficiency and each of the different stages of BSC are obtained. So that, finding a model for decision making units in various stages of BSC is the innovation of this research study.Keywords: Data envelopment analysis, Balanced Scorecard, Decision Making Units, goal programming, Weighting Objective Function, Multi Objective Programming
-
Scientia Iranica, Volume:25 Issue: 6, Nov - Dec 2018, PP 3635 -3653In this study, the response phase of the management of natural disasters is investigated. One of the important issues in this phase is determining the distribution areas and timely distribution of relief to affected areas in which transportation routing is of a critical matter. In the event of disasters, especially flood and earthquake, terrestrial transportation is not that much easy due to the damage to many infrastructures. For this reason, we propose that delivering relief from the distribution areas to disaster stricken places should be done simultaneously by terrestrial as well as aerial transportation modes to increase route reliability and reduce travel time. In this study, for relief allocation after earthquake, we offer a mixed-integer nonlinear open location-routing model in uncertainty condition. This model includes several contradictory objectives and variety of factors such as travel time, total costs, and reliability. In order to solve this model, a hybrid solution by combining robust optimization and fuzzy multi-objective programming has been used. The performance and effectiveness of the offered model and solution approach has been investigated through a case study on the earthquake in East Azerbaijan, Iran. Our computational results show the solution we have offered for real problems has been effective.Keywords: Emergency logistics, Relief distribution, location, routing, Split delivery, Multi-Objective Programming, Robust Optimization
-
روند روبه افزایش وقوع حوادث و بحران های طبیعی بیانگر اهمیت برنامه ریزی های مقابله با آن هاست. در این پژوهش، مدل امکانی-تصادفی دوسطحی چندهدفه-چنددوره ای-چندکالایی مبتنی بر برنامه ریزی آرمانی به منظور یکپارچه سازی عملیات قبل و بعد بحران، همچنین بازسازی مسیرها و تسهیلات امدادی آسیب دیده ارائه شده است. توابع هدف درنظر گرفته شده شامل حداقل کردن کل هزینه ها (هزینه های حمل کالاهای امدادی میان تسهیلات، هزینه های ذخیره سازی اقلام امدادی، هزینه های کمبود، هزینه های بازسازی انبارها و مسیرهای آسیب دیده) و حداکثرکردن توزیع عادلانه اقلام امدادی در مناطق آسیب دیده است. عدم قطعیت شناختی در پارامترهای مرتبط با اهداف آرمانی، تقاضای نقاط آسیب دیده و هزینه ها درنظر گرفته شده است. مدل غیرقطعی ابتدا به کمک روش برنامه ریزی امکانی کارا، به مدل قطعی چندهدفه تبدیل شده و در ادامه با استفاده از روش ترابی و هسینی به مدل تک هدفه معادل کاهش می یابد. نتایج حاصل از حل مدل روی مثال عددی، بیانگر کارایی مدل ریاضی است.کلید واژگان: لجستیک بشردوستانه، بازسازی مسیرها و انبارهای آسیب دیده، برنامه ریزی آرمانی، برنامه ریزی امکانی-تصادفی دومرحله ای، بهینه سازی چندهدفهThe increasing trend in happening natural disasters mandates developing appropriate contingency plans to deal with them. in this paper, a goal programming based model is developed for an integrated pre- and post-disaster operations management while considering the restoration of disrupted routed and warehouses. The model accounts for epistemic uncertainty in input data through a hybrid two-stage scenario-based possibilistic-stochastic programming model. To validate the proposed model and its practicality, an illustrative example is also presented and its numerical results are assessed.Keywords: Humanitarian logistics, Relief chain, Two-stage possibilistic-stochastic programming, Goal programming, Multi-objective programming
- نتایج بر اساس تاریخ انتشار مرتب شدهاند.
- کلیدواژه مورد نظر شما تنها در فیلد کلیدواژگان مقالات جستجو شدهاست. به منظور حذف نتایج غیر مرتبط، جستجو تنها در مقالات مجلاتی انجام شده که با مجله ماخذ هم موضوع هستند.
- در صورتی که میخواهید جستجو را در همه موضوعات و با شرایط دیگر تکرار کنید به صفحه جستجوی پیشرفته مجلات مراجعه کنید.