bayesian approach
در نشریات گروه پزشکی-
BackgroundVital parameters must be monitored during sedation. This study aimed to evaluate the effects of ketamine-midazolam (KM) and ketamine-propofol (KP) combinations on the heart rate (HR) and oxygen saturation (SPO2) of non-cooperative children. The model parameters were estimated using the Bayesian approach.MethodsThe data were collected in a double-masked crossover study with repeated measurements (CSWRM). Twenty-two non-cooperative children 3–6 years old were included, and the linear mixed model was adopted for data analysis. The Bayesian estimation of the parameters and their 95% credible interval were calculated in SAS 9.4.ResultsThe mean heart rate of KM recipients compared to KP recipients was significantly different by 4.47 beats per minute (bpm). The mean HR in KP was lower than KM's, but oxygen saturation (SPO2) was not significantly different.ConclusionAlthough the two drug combinations did not differ in SPO2, they differed in HR. As such, the KP combination is recommended.Keywords: Ketamine, Midazolam, Propofol, Non-Cooperative Children, Crossover Trial, Bayesian Approach
-
Introduction
Recurrent event data are common in many longitudinal studies. Often, a terminating event such as death can be correlated with the recurrent event process. A shared frailty model applied to account for the association between recurrent and terminal events. In some situations, a fraction of subjects experience neither recurrent events nor death; these subjects are cured.
MethodsIn this paper, we discussed the Bayesian approach of a joint frailty model for recurrent and terminal events in the presence of cure fraction. We compared estimates of parameters in the Frequentist and Bayesian approaches via simulation studies in various sample sizes; we applied the joint frailty model in the presence of cure fraction with Frequentist and Bayesian approaches for breast cancer.
ResultsIn small sample size Bayesian approach compared to Frequentist approach had a smaller standard error and mean square error, and the coverage probabilities close to nominal level of 95%. Also, in Bayesian approach, the sampling means of the estimated standard errors were close to the empirical standard error.
ConclusionThe simulation results suggested that when sample size was small, the use of Bayesian joint frailty model in the presence of cure fraction led to more efficiency in parameter estimation and statistical inference.
Keywords: Bayesian approach, Breast cancer, Cure fraction, Joint frailty model, Recurrent event -
Background
Hematopoietic stem cell transplantation (HSCT) is the most effective of all hematologic malignancies treatments, resulting in a significant improvement in survival rate.
ObjectivesThis study aimed at determining the survival rate and factors affecting the survival in patients undergoing hematopoietic stem cell transplantation, using the joint model.
MethodsThis study was a retrospective cohort study, used for collecting data from patients with hematopoietic malignancies who underwent hematopoietic stem cell transplantation in Taleghani Hospital (Shahid Beheshti University of Medical Sciences), Tehran, Iran during the years 2007 and 2015 and were followed up till 2017. A Bayesian joint model of longitudinal and survival was chosen, using Win Bugs software.
ResultsA total of 395 patients were enrolled. The median overall survival was 6.3 years (95% CI (5.86, 6.76)). Eighty-one patients had died. The obtained results from this study manifested that age (HR: 1.02, 95% CI: (1.002, 1.04)) and pre-transplantation relapse (HR = 1.64, 95% CI: (1.09, 2.4)) have incremental impact on death after transplantation, while malignancy type (NHL (HR: 0.33, 95%CI: (0.152, 0.73)) and AML (HR: 0.62, 95% CI: (0.29, 0.7)) are also effective in reducing death after transplantation. Similarly, the correlation index between longitudinal and survival models proved to be significant (HR: 0.6, 95% CI: (0.0802, 0.37)).
ConclusionsThis study showed that age, per-transplantation relapse, and malignancy type are the effective factors in the survival rate. Moreover, the link parameter between longitudinal response (WBC) and the survival indicated that an increase in WBC count leads to a decrease in the death risk.
Keywords: Bayesian Approach, Disease, Survival, Hematopoietic Stem Cells -
Background
Lung cancer is one of the most common cancers around the world. The aim of this study was to use Extended Cox Model (ECM) with Bayesian approach to survey the behavior of potential time-varying prognostic factors of Non-small cell lung cancer.
Materials and MethodsSurvival status of all 190 patients diagnosed with Non-Small Cell lung cancer referring to hospitals in Yazd were recorded from 2009 to 2013 by phone call. We fitted conventional Cox proportional hazards (Cox PH) as well as Bayesian ECM. Inference for estimated risk ratios was based on 90% credible intervals. Log pseudo marginal likelihood criteria (LMPL) was used for model comparison. Statistical computations were based on R language.
ResultsIn this study, 190 patients with non-small cell lung cancer were followed, of whom 160 died because of the disease (84.2%). Median of survival time was 8 ± 0.076 month. After fitting the Cox PH Model, it was determined that the PH assumption was not satisfied for the type of treatment, the disease stage, and pathology status variables (p <0.001). LPML for Cox PH and Bayesian ECM was -431.593 and -401.01, respectively. Estimated hazard ratio curves based on Bayesian ECM showed that the risk ratio for these variables exhibited significant time varying behavior on hazard of lung cancer through follow up time.
ConclusionBased on LMPL, Bayesian ECM was found to have a better fit than Cox PH Model which declares, results from Cox PH should be interpreted with care. Especially, from beginning of the study to about 20 month after, very high risk ratio was estimated for variables whose PH was not satisfying for them.
Keywords: Bayesian approach, Chemotherapy, radiotherapy, Extended Cox regression, Time-dependent variables, Non-small cell lung cancer -
مقدمه و اهداف
دیابت بارداری یک عارضه طبی در بارداری بوده که تشخیص دیرهنگام آن میتواند اثرات نامطلوبی روی مادر و جنین بگذارد. هدف از انجام این پژوهش، برآورد پارامترهای دقت یک نشانگر زیستی برای پیشبینی زودهنگام دیابت بارداری در غیاب یک تست استاندارد مرجع کامل بود.
روش کاراین مطالعه روی 523 خانم باردار که در سال های 96 و 97 به بیمارستانهای مهدیه و طالقانی تهران مراجعه کرده بودند، انجام شد. مقادیر اندازهگیری شده بتا گنادوتروپین جفتی انسانی به عنوان پیشگوی دیابت بارداری برای همه زنان شرکت کننده در هفته 17-14 بارداری در چک لیست مربوط ثبت شد. برای برآورد حساسیت، ویژگی و مساحت زیر منحنی راک، از مدل متغیر پنهان بیزی استفاده شد. برآورد بیزی پارامترها در بسته نرم افزاری R2OpenBUGS در نرمافزار R نسخه 3.5.3 محاسبه شد.
یافته هامیانه سن بارداری زنان شرکت کننده در این مطالعه، 33 سال بود. در نبود آزمون مرجع کامل، یافته های مدل بهکار رفته برای مقدارهای حساسیت، ویژگی و مساحت زیر منحنی راک مربوط به بتا گنادوتروپین جفتی انسانی به ترتیب برابر با 71 درصد (فاصله باورمند 95 درصد: 98/0-43/0)، 64 درصد (فاصله باورمند 95 درصد: 67/0-60/0) و 72/0 (فاصله باورمند 95 درصد: 98/0-50/0) بود.
نتیجه گیریبر اساس یافته های بهدست آمده در این مطالعه، بتا گنادوتروپین جفتی انسانی در غیاب تست مرجع کامل میتواند برای پیشبینی زودهنگام دیابت در خانم های باردار مناسب باشد.
کلید واژگان: مدل متغیر پنهان، منحنی راک، روش بیزی، دیابت بارداری، گنادوتروپین جفتی انسانیBackground and ObjectivesGestational diabetes mellitus (GDM) is a medical problem in pregnancy, and its late diagnosis can cause adverse effects in the mother and fetus. The purpose of this research was to estimate the accuracy parameters of a biomarker for early prediction of gestational diabetes in the absence of a perfect reference standard test.
MethodsThis study was conducted in 523 pregnant women who presented to Mahdieh Hospital and Taleghani Hospital affiliated with Shahid Beheshti University of Medical Sciences, Tehran, Iran 2017-2018. As a predictor for detecting GDM, beta- human chorionic gonadotropin (β-hCG) measurements were recorded during 14-17th weeks’ gestation in a checklist. The Bayesian latent variable model was used to estimate the sensitivity, specificity, and area under receiver operating characteristic curve (AUC). Bayesian parameter estimation was calculated using the R2OpenBUGS package in R version 3.5.3.
ResultsThe median gestational age was 33 years. In the absence of a perfect reference test, the applied model had a sensitivity, specificity, and AUC of 78% (95% credible interval (CrI): 0.66-0.83), 83% (95% CrI: 0.74-0.89), and 0.72 (95% CrI: 0.64-0.88) for β-hCG, respectively.
ConclusionAccording to the results of this study, β-hCG may be an acceptable biomarker for early diagnosis of diabetes in pregnant women in the absence of a perfect reference test.
Keywords: Latent variable modeling, ROC curve, Bayesian approach, Gestational diabetes, Human chorionic gonadotropin -
BackgroundCongenital Hypothyroidism (CH) is one of the reasons for mental retardation and defective growth in neonates. It can be treated if it is diagnosed early. The congenital hypothyroidism can be diagnosed using newborn screening in the first days after birth. Disease mapping helps to identify high-risk areas of the disease. This study aimed to evaluate the pattern of CH using the Poisson Spatio-temporal model in disease mapping under the Bayesian paradigm.MethodsThe recorded data of all infants diagnosed with CH between 2011 and 2018 in Guilan, Iran were used in this study. The Poisson Spatio-temporal model under the Bayesian paradigm was run using the Markov Chain Monte Carlo method in Open BUGS software. Moreover, the maps of the towns in Guilan were prepared via Arc GIS software.ResultsOut of 219800 live births in Guilan, Iran, the incidence of CH was 2:1000 in this time period. The pattern of disease mapping for the posterior mean of relative risk for CH was identical in this 7-year period. Furthermore, the pattern of disease mapping with spatial model excluding time dependence was similar to the maps of the Spatio-temporal model.ConclusionThe incidence rate of CH was approximately constant during this time, and disease mapping revealed no rising trends in this period. This probably can be due to resolving iodine deficiency as one of the main causes of CH incidence by consuming kinds of seafood and iodized salt in Guilan province.Keywords: Bayesian approach, Congenital hypothyroidism, disease mapping, spatio-temporal model
-
BackgroundThe prevalence of HIV is increasing in Iran, so obtaining an estimate of the survival of HIV-infected persons can be helpful to prevent and control this infection.ObjectivesThis research aimed to use the Bayesian joint model by which identifies factors associated with the survival and determine the relationship between the trend of CD4+ T cell counts and survival time in HIV-infected persons.MethodsIn this retrospective cohort study, we collected HIV/AIDS surveillance data from Mashhad’s Counseling Center of Behavioral Diseases in the province of Khorasan Razavi, Northeast of Iran, during 1994 - 2014. Data collection included variables CD4+ T cells count, survival time, and other related factors. We used the Bayesian joint model to estimate the survival time and identify the factors associated with survival time in HIV-infected persons.ResultsThe study included 260 individuals, of whom 212 (81.54%) were male. The survival sub-model of the joint model identified gender (95% credible interval (CI): 0.486, 3.197) and antiretroviral treatment (95% CI: -1.935, -0.641) as the variables associated with the patients’ survival. The longitudinal sub-model, which determined the variables associated with the number of CD4+ T-cells included time (95% CI: -0.934, -0.554), age (95% CI: -0.152, -0.011), and antiretroviral treatment (95% CI: -6.193, -3.505).ConclusionsUsing CD4+ T cells as a covariate in the Bayesian joint model, the survival time for HIV-infected persons was estimated more precisely than separate model and it can be inferred that at the beginning of antiretroviral treatment, especially in men and controls, the CD4+ T cell counts can increase the survival time of HIV-infected persons.Keywords: Bayesian Approach, CD4 T-Cells Count, HIV, AIDS, Survival Time
-
BackgroundTumor stage is one of the most reliable prognostic factors in the clinical characterization of colorectal cancer. The identification of genes associated with tumor staging may facilitate the personalized molecular diagnosis and treatment along with better risk stratification in colorectal cancer.ObjectivesThe study aimed to identify genetic signatures associated with tumor staging and patients’ survival in colorectal cancer and recognize the patients' risk category for clinical outcomes based on transcriptomic data.MethodsIn this retrospective cohort study, two available transcriptomic datasets, including 232 patients with colorectal cancer under accession number GSE17537 and GSE17536 were used as discovery and validation sets, respectively. A Bayesian sparse group selection method in the discovery set was applied to identify the associated genes with the tumor staging. Then further screening was performed using survival analysis, and significant genes were used to develop a gene signature model. Finally, the robust performance of the signature model was assessed in the validation set.ResultsA total of 56 genes were significantly associated with the tumor staging in colorectal cancer. Survival analysis resulted in a shortlist of 19 genes, including ADH1B (P = 0.012), AHI (P = 0.006), AKAP12 (P = 0.018), BNIP3 (P = 0.015), CLDN11 (P = 0.015), CST9L (P = 0.028), DPP10 (P = 0.029), FBXO33 (P = 0.036), HEBP (P = 0.025), INTS4 (P = 0.003), LIPJ (P = 0.001), MMP21 (P = 0.006), NGRN (P = 0.014), PAFAH1B2 (P = 0.035), PCOLCE2 (P = 0.009), PIM1 (P = 0.007), TBKBP1 (P = 0.003), TCEB3B (P = 0.001), and TIPARP (P = 0.018), developing the signature model and validation. In both discovery and validation sets, the discrimination ability of the signature model to categorize patients with colorectal cancer into low- and high-risk subgroups for mortality and recurrence at 3- and 5-years showed good discrimination performances, with the area under the receiver operating characteristic curve (ROC) ranging from 0.64 to 0.88. It also had good sensitivity (discovery set 63.1%, validation set 61.7%) and specificity (discovery set 75.0%, validation set 59.3%) to discriminate between early- and late-stage groups.ConclusionsWe identified a 19-gene signature associated with tumor staging and survival of colorectal cancer, which may represent potential diagnosis and prognosis markers, and help to classify patients with colorectal cancer into low- or high-risk subgroups.Keywords: Bayesian Approach, Colorectal Cancer, Gene Expression Signatures, Microarray Analysis, Prognosis, Recurrence, Overall Survival, Tumor Staging, Classification, Gene Ontology, Risk, Transcriptome
-
BackgroundMammography is a valuable tool for early diagnosis of breast cancer in asymptomatic women. Considering the high prevalence of breast cancer in Iranian women and the low participation in mammography screening program, the purpose of this study was to investigate the factors affecting frequency of mammography screening in women over 40 years of age using zero-.MethodsIn this study, the required information about number of performing mammography in women’s’ lifetime, demographic characteristics and behavioral risk factors were obtained through interview based on a researcher-made questionnaire. To investigate the factors affecting mammography, zero inflation Poisson regression models were performed using Win Bugs software.ResultsThe mean (SD) age of women participating in this study was 49.87 (6.76). 77% of the participants have never undergone mammography, 8.9% once, 6.9% twice, 6.7% three times, and 0.5% more than three times. Age had a positive effect on the number of mammograms in the women who have perform mammograms at least once. Having a family history of cancer and breast cancer, middle compared to low economic status, higher compared to low education and menopause were significantly associated with lower probability of never performing mammography.ConclusionGiven the relatively low participation of women in mammography, more facilities are needed for high risk women (aged 40-70) to facilitate the diagnosis process.Keywords: Mammography, Breast cancer, Zero-Inflated, Poisson Regression, Bayesian Approach
-
مقدمهتشنج یک اختلال نورولوژیکی در کودکان است. کودکانی که حداقل یک بار بیماری تشنج را در 16 سال اول زندگی تجربه کرده اند. مطالعه حاضر با هدف تعیین برخی عوامل خطر طول زمان تا عودهای مکرر تشنج در کودکان با استفاده از تابع مفصل حاشیه ای پارامتری با رویکرد بیزی انجام شد.روش کاردر این مطالعه توصیفی- طولی، اطلاعات مندرج در پرونده 300 کودک که بین سال های 1393 تا 1395 در 4 بیمارستان به علت عود بیماری تشنج پذیرش شده بودند، جمع آوری گردید. زمان های تشنج کودکان پس از هر بار مراجعه به این مراکز درمانی ثبت شد و زمان های بین پیشامدهای عود متوالی تشنج محاسبه گردید. برای مدلسازی زمان تا عودهای مکرر تشنج در کودکان، توزیع توام تابع مفصل حاشیه ای پارامتری وایبل کلایتون بر داده ها برازش داده شد و با رویکرد بیزی تحلیل گردید. از نرم افزارهای WinBugs و R نسخه 3. 4. 1 برای تحلیل داده ها استفاده گردید.یافته ها0/15 درصد از کودکان هنگام تشنج تب داشتند و 3/64 درصد از این کودکان حداقل یک بار به دلیل عود تشنج در بیمارستان بستری بوده اند. 6/74 درصد برای تشنج دارو مصرف می کردند. 0/25 درصد از مادران این کودکان زایمان سخت داشتند. نتیجه آزمایش الکترولیتی 0/40 درصد نرمال بود. 0/27 درصد سابقه خانوادگی تشنج داشتند و 4/78 درصد از این کودکان دارای وضعیت تکاملی نرمال بودند. بازه اطمینان 95% برای پارامتر وابستگی (پارامتر مفصل) در مدل تابع مفصل حاشیه ای پارامتری وایبل کلایتون پایه برابر (434/0، 217/0) برآورد شد. متغیرهای سابقه بستری در بیمارستان و مصرف دارو دارای رابطه معنی دار بودند.نتیجه گیریبین زمان های پیشامدهای عود متوالی تشنج کودکان همبستگی وجود داشت. پیشنهاد می شود پزشکان برای انجام مراحل بالینی، عوامل مصرف دارو و سابقه بستری در بیمارستان را که جزء عوامل مرتبط با عودهای مکرر تشنج در کودکان هستند، مورد توجه قرار دهند.کلید واژگان: زمان تا عودهای مکرر تشنج کودکان، تابع مفصل، حاشیه ای پارامتری، رویکرد بیزیIntroductionSeizure is a neurological disorder in children. Children have experienced seizures at least once in the first 16 years of life. The aim of this study is to determine some risk factors of recurrent times to childhood seizures using Parametric Copula Marginal Model applying Bayesian Approach.MethodsIn this descriptive-longitudinal study, data from a case filed in 300 children who were admitted in four hospitals between 2014 and 2016 due to recurrence of seizure disease were collected. The seizure times of children were recorded after each visit to these centers and the time intervals between seizure recurrence events were calculated. For modeling of time to recurrent seizures in children, the joint distribution of the Parametric Copula Marginal Model applying Bayesian Approach was fitted to the data and analyzed by Bayesian approach. WinBugs and R versions 3.4.1 were used for data analysis.Results15.0% of the children had seizure and 64.3% of these children were hospitalized at least once due to seizure recurrence. 25.0% of the mothers of these children had a hard labor. The result of the electrolytic test was 40% normal. 27.0% had a family history of seizure and 78.4% of the children had normal evolutionary status. The 95% confidence interval for the dependency parameter (detailed parameter) was estimated with the parametric marginal risk of the Weibull-Clayton equation (0.434, 0.227). There was a significant relationship between the history of hospitalization and drug use.ConclusionsThere was a correlation between the recurrence events of children with seizure. It is suggested that doctors consider the clinical steps, drug use factors, and hospitalization history, which are among the factors associated with frequent recurrence of seizure in children.Keywords: Time to Recurrence of Childhood Seizures, Copula Model, Parametric Marginal Model, Bayesian Approach
-
Background and AimIn clinical dental studies, each participant has usually several visits, and since the review and ongoing monitoring of the subjects are often expensive or even impossible, so people are examined periodically during regularly pre-scheduled visits. Therefore, discrete or grouped clustered failure time data are collected. We aimed to show the use of Monte Carlo Markov Chain (MCMC) and the non-informative prior in a Bayesian framework in multilevel modeling of clustered grouped survival data.
Methods & Materials: A two-level model with additive variance components model for the random effects was considered. Both the grouped proportional hazards model and logistic regression with logit link function model were used. Using grouped proportional hazards method, we could approximate intracluster correlation of the log failure times. The statistical package OpenBUGS was adopted to estimate the parameter of interest based on the MCMC method. A cohort study was used in which 1011 persons visited at clinic dentistry of Tehran University of Medical Sciences, Iran, between the years 2002 and 2013 for dental implant and 2368 implants were placed for them in total. Clinical status of dental implants was evaluated in three periods after placement, thus clustered grouped failure times of the dental implants were recorded.ResultsThe grouped proportional hazards model showed that clustering effect among the log failure times of the different implants from the same person was fairly strong (correlation = 0.99). Complication and biomaterial variables had no effect on the implant failure, and there was no difference in the failure times related to the molar, premolar, canine, primary, and incisor since 95% credible interval (CI) included 0. The CI related to the gender and place of teeth not including 0, so these variables were significant in the model. The estimates of the baseline parameters (γ1, γ2, and γ3) were increasing indicating increasing hazard rates from interval 1-3. Results of logistic regression were similar to grouped proportional hazards model with wider confidence intervals.ConclusionThe use of MCMC approach and non-informing prior in Bayesian framework to mimic maximum likelihood estimations in a frequentist approach in multilevel modeling of clustered grouped survival data can be easily applied with the use of the software OpenBUGSKeywords: Grouped clustered failure time, Intracluster correlation, Monte Carlo Markov Chain, Non-informative prior, Bayesian approach, OpenBUGS -
BackgroundChronic kidney disease (CKD) is a major public health problem that may lead to end-stage renal disease (ESRD). Renal transplantation has become the treatment modality of choice for the majority of patients with ESRD. It is therefore necessary to monitor the disease progression of patients who have undergone renal transplantation. In order to monitor the disease progression, the continuous assessment of kidney function over time is considered..ObjectivesThis study aimed to investigate the etiological role of recipient characteristics in serum creatinine changes within the follow-up period and in relation to the graft failure risk, as well as to evaluate whether or not the serum creatinine level represents an indicator of graft failure following renal transplantation..MethodsThis retrospective cohort study was conducted at the department of nephrology, Baqiyatallah Hospital, Baqiyatallah University of Medical Sciences, between April 2005 and December 2008. The study involved 413 renal transplantation patients. The primary outcomes were the determination of the serum creatinine levels at each attendance and the time to graft failure. Robust joint modeling of the longitudinal measurements (serum creatinine level) and time-to-event data (time to graft failure) were used for the analysis in the presence of outliers in the serum creatinine levels. The data analysis was implemented in WinBUGS 1.4.3..ResultsThere was a positive association between the serum creatinine level and graft failure (HR = 5.13, PConclusionsGraft failure is more likely to occur in patients with higher serum creatinine levels..Keywords: End, Stage Renal Disease (ESRD), Graft Loss, Serum Creatinine Level, Robust Joint Modeling, Bayesian Approach
-
BackgroundDuring mixed dentition period, one can make accurate estimation of future dental development and can assess whether there will be enough space in the dental arch. In orthodontics treatment planning, it is vital to predict space required for unerupted canine and premolars in the arch.ObjectivesThe main goal of this study is to compare different teeth combinations in predicting needed space for unerupted canine and premolars on Bayesian approach and introduce the most reliable one.
Patients andMethodsThe sample for this study consists of 47 dental casts (19 males, 28 females) with complete erupted dental arches. The meisodistal width of all teeth was measured using a dental caliper. We consider different combinations of teeth size and compare them to find the best predictor. In order to do that, quantile regression and Bayesian approach are applied using R software.ResultsCombination of first maxillary molars with sum of central and lateral mandibular incisors has the smallest standard deviation. This is true for male and female samples. The regression formula based on this teeth combination has been introduced.ConclusionsIn our sample, combination of Mandibular incisors and maxillary first molar is found to be better than the other predictors for female and female model in both arches.Keywords: Mixed Dentition Analysis, Unerupted Canine, Premolars, Quantile Regression, Bayesian Approach -
Background and AimIn the survival data with Long-term survivors the event has not occurred for all the patients despite long-term follow-up, so the survival time for a certain percent is censored at the end of the study. Mixture cure model was introduced by Boag, 1949 for reaching a more efficient analysis of this set of data. Because of some disadvantages of this model non-mixture cure model was introduced by Chen, 1999, which became well-known promotion time cure model. This model was based on the latent variable distribution of N. Non mixture cure models has obtained much attention after the introduction of the latent activating Scheme of Cooner, 2007, in recent decades, and diverse distributions have been introduced for latent variable.
Methods & Materials: In this article, generalized Poisson- inverse Gaussian distribution (GPIG) will be presented for the latent variable of N, and the novel model which is obtained will be utilized in analyzing long-term survival data caused by skin cancer. To estimate the model parameters with Bayesian approach, numerical methods of Monte Carlo Markov chain will be applied. The comparison drawn between the models is on the basis of deviance information criteria (DIC). The model with the least DIC will be selected as the best model.ResultsThe introduced model with GPIG, with deviation criterion of 411.775, had best fitness than Poisson and Poisson-inverse Gaussian distribution with deviation criterion of 426.243 and 414.673, respectively.ConclusionIn the analyzing long-term survivors, to overcome high skewness and over dispersion using distributions that consist of parameters to estimate these statistics may improve the fitness of model. Using distributions which are converted to simpler distributions in special occasions, can be applied as a criterion for comparing other models.Keywords: Generalized Poisson, inverse Gaussian distribution, Long, term survivors, Promotion time cure model, Bayesian approach -
مقدمهتنوع علل مرگ در جوامع سالمندی بالاست. برای بررسی و تحلیل زمان تا مرگ سالمندان می توان از الگوهای مخاطرات رقابتی استفاده کرد. هدف از این مطالعه، شناسایی برخی عوامل موثر بر بقاء سالمندان مقیم سرای سالمند با استفاده از الگوی مفصل مخاطرات رقابتی با رویکرد بیزی می باشد.مواد و روش هادر این مطالعه توصیفی-طولی، اطلاعات مندرج در پرونده 510 سالمند پذیرش شده در مجتمع سالمندان گلابچی کاشان استخراج شد. برای شناسایی عوامل موثر بر زمان تا مرگ سالمندان، تشخیص های پزشکی مندرج در پرونده سالمندان مدنظر قرار گرفت. سپس الگوی مخاطرات رقابتی با استفاده از تابع مفصل کلایتون تحت رویکرد بیزی بر داده ها برازش شد و فواصل اطمینان بیزی (باورمند) برآورد گردید. از نرم افزار WinBugs برای تجزیه و تحلیل داده ها استفاده شد.یافته هادر بررسی الگوی تک متغیره با توجه به فواصل اطمینان بدست آمده، عوامل سن در آغاز پذیرش، فشار خون بالا، وجود سابقه بیماری قلبی در فامیل، سابقه سکته قلبی و سابقه سکته مغزی بر زمان تا مرگ سالمندان به علت بیماری های قلبی عروقی دارای اثری معنادار بودند. در الگوی چندگانه متغیرهای قرار داشتن در گروه سنی بین 75-90 سال در آغاز پذیرش ((HR=2.1; CI 95%= (1.26، 3.67) و سابقه سکته مغزی((HR=2; CI 95%= (1.28، 3.32) بر زمان تا مرگ سالمندان به علت بیماری های قلبی عروقی دارای اثری معنادار بودند.نتیجه گیرییکی از محاسن الگو سازی آماری، قابلیت تعمیم نتایج بدست آمده می باشد. با توجه به یافته های به دست آمده عوامل مهمی که زمان وقوع مرگ در سالمندان را تسریع می بخشند شناسایی شدند. لذا توصیه می شود در اقدامات درمانی و پیشگیرانه به منظور افزایش زمان بقا برای سالمندان عوامل مذکور نیز مدنظر قرار گیرند.
کلید واژگان: سالمندی، بیماری قلبی عروقی، مخاطرات رقابتی، تابع مفصل، رویکرد بیزیIntroductionWide verity of causes of death exist in ageing societies. It is suitable to apply competing risk models in order to investigate and analyze time to death in the target population. The aim of this study was to identify some factors effective on survival of the elderly living in nursing home using Copula Competing Risk Model with Bayesian approach.Materials and MethodsIn a descriptive-longitudinal study، data were collected from 510 elderly’s medical documents in Kashan Golabchi elderly nursing home. To identify effective factors associated with time to death of the elderly، medical diagnosis of cause of death cited in elderly’s documents were considered. Later، Competing Risk Model using Clayton Copula Function based on Bayesian approach was fitted and Credible intervals were estimated. To analyze the data WinBugs Software was used.FindingsIn univariate analysis، being in the age at the beginning of reception، hypertension، family history of cardiovascular diseases، history of myocardial infarction، history of stroke were significant for time to death due to cardiovascular diseases in the elderly. In multivariate analysis، age group 75 to 90 years at the beginning of the reception (HR=2. 1; CI 95%= (1. 26، 3. 67)) and history of stroke (HR=2; CI 95%= (1. 28، 3. 32)) were significant for time to death due to cardiovascular diseases in the elderly.ConclusionOne of the benefits of statistical modeling is the ability to generalize its results. According to the results، some crucial factors accelerating the time of death in elderly were identified. Therefore، it is highly recommended that، in therapeutic and preventive actions in order to increase the survival time for the elderly the significant studied factors should be considered.Keywords: Ageing, Cardiovascular diseases, Competing Risks, Copula Function, Bayesian approach -
سابقه و هدفاسکیزوفرنیا یک اختلال شدید روانی است که در آن بیمار پس از بهبودی، مجددا امکان ابتلا به بیماری را دارا می باشد. هدف از مطالعه حاضر، شناسائی برخی عوامل خطر زمان های وقوع عود در بیماران اسکیزوفرنی به کمک مدل شکنندگی زمان شکست شتابنده پارامتری وایبل در تحلیل بقا با رویکرد بیزی بوده است.مواد و روش هادر مطالعه ای طولی و گذشته نگر از اطلاعات 159 بیمار اسکیزوفرنی در مرکز آموزشی_درمانی روان پزشکی رازی تهران استفاده شد. در تحلیل بقا زمان های عود بیماری اسکیزوفرنی حوادث بازگشتی محسوب می شوند. برای شناسائی برخی عوامل خطر این زمان ها، مدل شکنندگی زمان شکست شتابنده پارامتری وایبل به داده ها برازش داده شد و با رویکرد بیزی و با استفاده از نرم افزار WinBUGS تحلیل گردید. عوامل شتابنده و فواصل باورمند برای آزمون معنی داری آن ها برآورد گردید.یافته هااز بین متغیرهای مورد بررسی، اثر سن آغاز بیماری ((93/0،91/0): 95% CI)، جنس ((81/0،42/0): 95% CI)، وضعیت تاهل ((58/0،33/0): 95% CI) و سابقه بیماری اسکیزوفرنی در خانواده ((84/0،51/0): 95% CI) بر زمان وقوع عودهای بیماری معنی دار شدند هم چنین هم بستگی (پارامتر شکنندگی) بین زمان های وقوع عود، معنی دار ((58/0،24/0): 95% CI) شد.نتیجه گیریبه دلیل وجود هم بستگی بین زمان های عود، اقدامات پیگیرانه و شناسایی راه هایی به منظور کاهش احتمال بازگشت بیماری به خصوص برای بیمارانی که عود را در سنین پایین تری تجربه می کنند، بیماران مجرد، مذکر و بیمارانی که سابقه اسکیزوفرنی در خانواده خود دارند، حائز اهمیت است. به دلیل عدم ثبت منظم سایر متغیرها در پرونده ها، شناسائی سایر عوامل خطر ممکن نگردید.
کلید واژگان: زمان های عود، اسکیزوفرنی، مدل شکنندگی زمان شکست شتابنده، تحلیل بیزیKoomesh, Volume:15 Issue: 3, 2014, PP 310 -315IntroductionSchizophrenia is a severe mental disorder and one of its important features is repetition of relapses over time. The aim of this study was to identify some risk factors of relapse time in schizophrenia patients using Weibull parametric accelerated failure time frailty model in survival analysis with Bayesian approach.Materials And MethodsIn this retrospective longitudinal study, the data was extracted from records of 159 schizophrenia patients with at least one relapsein Razi Psychiatric ٍEducational-Medical Centre in Tehran. In survival analysis, the times of relapses of schizophrenia are known as recurrent events times. To identify some risk factors of these times, Weibull accelerated failure time frailty model was fitted to the data and analyzed by Bayesian approach using WinBUGS software to estimate accelerated factors and their credible intervals for significance testing.Results28. 7% of males and 12% of females had experienced 9 to 14 times of relapse. Among the studied factors, age at onset (CI95%: (-0. 09, -0. 07), gender (CI95%: (-0. 87, -0. 21)), marital status CI95%: (-1. 12, -0. 55) and family history of schizophrenia (CI95%: (-0. 67, -0. 17) were identified as significant risk factors for the times of occurred relapses, but the mode of onset and a history of head injury was not a significant risk facor. There was a significant correlation (frailty parameter) among the relapses times (CI95%: (0. 24, 0. 58)), too.ConclusionExisting correlation among relapse times requires continued efforts. To decrease relapse probability especially in patients who experience relapses in low ages, single, male and patients with family history of schizophrenia, special preventive and treatment efforts is recommended. Not uniform registration of other variables in the records, made identifying other risk factors not possibleKeywords: Relapse, Schizophrenia, Accelerated failure time frailty model, Bayesian approach -
مقدمهرابطه نوبت کاری و بیماری های مزمن مانند بیماری های قلبی- عروقی و مکانیزم های مرتبط در مطالعات متعددی مورد بررسی قرار گرفته است. هدف این مطالعه، بررسی رابطه نوبت کاری و تغییرات طولی کلسترول با کنترل اثر وزن هنگام استخدام بود.
روش هااین مطالعه یک هم گروهی گذشته نگر شامل 674 نفر از کارکنان مرد استخدام شده طی سال های 1370 تا 1387 در شرکت پلی اکریل اصفهان بود. رابطه نوبت کاری و کلسترول به تفکیک وضعیت وزن هنگام استخدام نسبت به متغیرهای مخدوشگر شامل سن، شاخص توده بدنی (Body mass index یا BMI)، میزان کلسترول در شروع استخدام، گلوکز، تری گلیسیرید، اوره، نوع کار، سطح تحصیلات و وضعیت تاهل کنترل شد. برای تجزیه و تحلیل داده ها از مدل آمیخته خطی با خطاهای بیضوی-چوله استفاده شد. برآورد پارامترها با استفاده از رهیافت بیزی (Bayesian approach) و در نرم افزار Winbugs صورت گرفت. بازه اطمینان بیزی به منظور آزمون ضرایب رگرسیونی به کار گرفته شد.
یافته هابا توجه به معیار اطلاع انحراف، مدل آمیخته خطی با خطای نرمال-چوله نسبت به دیگر مدل ها بهتر بود. بر اساس برآوردهای این مدل، رابطه بین نوبت کاری و تغییرات کلسترول با کنترل متغیرهای مخدوشگر در افرادی که در بدو استخدام دارای اضافه وزن نبودند، معنی دار بود (88/3، 67/0 = CI 95 درصد، 001/0 = P، 25/2 = b)، ولی در افرادی که اضافه وزن داشتند معنی دار نبود.
نتیجه گیریمیانگین تغییرات کلسترول با افزایش سن در نوبت کارانی که هنگام استخدام اضافه وزن نداشتند به صورت معنی داری بیشتر از نوبت کارانی بود که هنگام استخدام دارای اضافه وزن بودند. همچنین مدل آمیخته خطی با خطاهای دم سنگین و چوله برازش بهتری نسبت به مدل آمیخته نرمال نشان داد.
کلید واژگان: نوبت کاری، کلسترول، رهیافت بیزی، مدل آمیخته خطی، توزیع بیضوی، چوله، توزیع نرمال، چولهBackgroundThe association between shift of work and chronic diseases such as cardiovascular diseases and their related mechanisms has been investigated in several studies. The aim of this study is to investigate the relationship between longitudinal change in total cholesterol as a main CVD risk factor and the shift of work، with controlling of the effect of baseline weight at time of recruitment.MethodsThis retrospective cohort study consists of 674 employees of Polyacryl Iran Corporation (PIC) of Isfahan from 1992 to 2009. The relationship between shift of work and cholesterol based on weight status at baseline of recruitment with the effect of confounding factors including age، BMI، pre-employment cholesterol، glucose، triglyceride، urea، work types، education، and marital status was studied. A linear mixed model with skew-elliptical errors was used for analysing the data. Parameter estimation was done using Bayesian approach using WinBUGS statistical software. Bayesian confidence interval was used for testing regression coefficients.FindingsLinear mixed model with skew-normal error was better compared to other models. In this model the relationship between shift of work and cholesterol changes with controlling of confounding factors was significant in those who were not overweight at baseline (β = 2. 25، P < 0. 001، 95% CI = 0. 67، 3. 88)، but was not significant for those who were overweight at baseline of employment.ConclusionBy increasing of age، the mean rate of cholesterol changes was significantly higher in shift workers who had normal weight at baseline of recruitment compared with shift workers who were over-weight at baseline of recruitment. Furthermore، linear mixed model with heavy tailed and skewed error indicate better fitting than the standard linear mixed model.Keywords: Shift Work, Cholesterol, Bayesian Approach, Mixed Model, Skew, Elliptical Distribution, Skew, Normal Distribution
- نتایج بر اساس تاریخ انتشار مرتب شدهاند.
- کلیدواژه مورد نظر شما تنها در فیلد کلیدواژگان مقالات جستجو شدهاست. به منظور حذف نتایج غیر مرتبط، جستجو تنها در مقالات مجلاتی انجام شده که با مجله ماخذ هم موضوع هستند.
- در صورتی که میخواهید جستجو را در همه موضوعات و با شرایط دیگر تکرار کنید به صفحه جستجوی پیشرفته مجلات مراجعه کنید.