Preparation of acellular sciatic nerve scaffold and it’s mechanical and histological properties for use in peripheral nerve regeneration

Message:
Article Type:
Research/Original Article (دارای رتبه معتبر)
Abstract:
Background
Tissue engineering is a developing multidisciplinary and interdisciplinary field involving the use of bioartificial implants for tissue remodeling with the target for repair and enhancing tissue or organ function. Acellular nerve has been used in experimental models as a peripheral nerve substitute. The purpose of the present study was to evaluate the mechanical and histological characteristics of acellular nerve scaffolds compared to the fresh nerve for application in environmental nerve repair.
Methods
This experimental study was conducted in Ferdowsi University of Mashhad Regeneration Research Laboratory, Mashhad, Iran, from May 2017 to October 2018. In this study for preparing the scaffold. The rats were sacrificed by intraperitoneal anesthesia with 10 % Chloral Hydrate solution. Then sciatic nerve fragments of the rats were removed above the nerve branching site and after cleansing of the tissues were decellularized by Sondell method, briefly nerves were treated with a series of detergent baths consisting of distilled water for 8 h, Triton X-100 for 12 h, and sodium deoxycholate for 24 hours according to the Sondell protocol. All acellularization steps were performed at room temperature. Then decellularized scaffolds were evaluated histologically and mechanically.
Results
The results of tissue evaluations showed that decellularization of scaffolds were done completely, this was demonstrated by hematoxylin and eosin staining and DAPI staining. Also the specialized tissue evaluations by picro-fuchsin staining and evaluation the scaffolds by scanning electron microscopy (SEM) micrographs showed that the collagen and elastin strands are relatively preserved in the extracellular matrix in comparison with control groups. As well as mechanical examination of scaffolds in tensile test showed that extracellular matrix of scaffolds was relatively preserved the main components of tissue compared to control group and scaffolds have good mechanical resistance quality for use in tissue engineering.
Conclusion
The results of the present study showed that decellularized scaffolds that prepared with Sondell decellularization method by preserving the main components of the tissue can be a good platform for investigating cellular behaviors.
Language:
Persian
Published:
Tehran University Medical Journal, Volume:77 Issue: 2, 2019
Pages:
115 to 122
magiran.com/p1986169  
دانلود و مطالعه متن این مقاله با یکی از روشهای زیر امکان پذیر است:
اشتراک شخصی
با عضویت و پرداخت آنلاین حق اشتراک یک‌ساله به مبلغ 1,390,000ريال می‌توانید 70 عنوان مطلب دانلود کنید!
اشتراک سازمانی
به کتابخانه دانشگاه یا محل کار خود پیشنهاد کنید تا اشتراک سازمانی این پایگاه را برای دسترسی نامحدود همه کاربران به متن مطالب تهیه نمایند!
توجه!
  • حق عضویت دریافتی صرف حمایت از نشریات عضو و نگهداری، تکمیل و توسعه مگیران می‌شود.
  • پرداخت حق اشتراک و دانلود مقالات اجازه بازنشر آن در سایر رسانه‌های چاپی و دیجیتال را به کاربر نمی‌دهد.
In order to view content subscription is required

Personal subscription
Subscribe magiran.com for 70 € euros via PayPal and download 70 articles during a year.
Organization subscription
Please contact us to subscribe your university or library for unlimited access!