Diagnosis of diabetes by using a data mining method based on native data
Background & Aim

Detecting the abnormal performance of diabetes and subsequently getting proper treatment can reduce the mortality associated with the disease. Also, timely diagnosis will result in irreversible complications for the patient. The aim of this study was to determine the status of diabetes mellitus using data mining techniques.


This is an analytical study and its database contains 254 independent records based on 13 characteristics. Data is collected by a researcher from one of the specialized diabetes centers in Mashhad.


After preprocessing of the obtained data, different methods of pattern recognition were applied. Using multilevel MLP neural networks, LVQ neural networks, SVM support vector and Kmeans clustering method, the mean square error (RMSE) was calculated. The correctness of each learner's performance is 94%, 92%, 96%, and 93%, respectively.


Reducing the diagnosis of diabetes is one of the goals of the researchers. Using data mining techniques can help to reduce this error. In this study, among different protocols used for pattern recognition, SMV method displayed a significantly better performance.

Article Type:
Research/Original Article
Journal of Torbat Heydariyeh University of Medical Sciences, Volume:7 Issue:1, 2019
1 - 14
روش‌های دسترسی به متن این مطلب
اشتراک شخصی
در سایت عضو شوید و هزینه اشتراک یک‌ساله سایت به مبلغ 300,000ريال را پرداخت کنید. همزمان با برقراری دوره اشتراک بسته دانلود 100 مطلب نیز برای شما فعال خواهد شد!
اشتراک سازمانی
به کتابخانه دانشگاه یا محل کار خود پیشنهاد کنید تا اشتراک سازمانی این پایگاه را برای دسترسی همه کاربران به متن مطالب خریداری نمایند!