Optimization of Window Proportions with an Approach to Reducing Energy Consumption in Office Buildings
Optimizing energy consumption in buildings, which includes a large part of the total energy consumed in the country, is very important. The window is also part of the interface inside and outside the building. The purpose of this research is to optimize the opening in the office in Tehran in terms of obtaining enough daylight and reducing energy consumption.
Simulation and optimization of the window performed parametrically in the Grasshopper and analysis of the objectives using the Honeybee and Ladybug plugins. The spatial Daylight Autonomy (sDA) and the Energy Use Intensity (EUI) calculated for proportions and varied window positions in eight variable directions.
The windows on the eastern north rotation and later in the east rotation had the best results. The window to wall ratio was 20% to 28%, with an average length of 6.53 and 0.9 meters, respectively, for the research model, the most ideal response. The distance between the windows to wal and the sillheight were respectively 0.65 and 2.22 meters.
Using modern simulation techniques enables building designers to have more intelligent choices in design with scientific approaches. The repeatable framework presented in this study can be used for buildings with different user positions or proportions, and ultimately enable designers to play an effective role in sustainable development by increasing their design productivity.