Recognition Covid-19 cases using deep type-2 fuzzy neural networks based on chest X-ray image

Message:
Article Type:
Research/Original Article (دارای رتبه معتبر)
Abstract:

Today, the new coronavirus (Covid-19) has become a major global epidemic. Every day, a large proportion of the world's population is infected with the Covid-19 virus, and a significant proportion of those infected dies as a result of this virus. Because of the virus's infectious nature, prompt diagnosis, treatment, and quarantine are considered critical. In this paper, an automated method for detecting Covid-19 from chest X-ray images based on deep learning networks is presented. For the proposed deep learning network, a combination of convolutional neural networks with type-2 fuzzy activation function is used to deal with noise and uncertainty. In this study, Generative Adversarial Networks (GANs) were also used for data augmentation. Furthermore, the proposed network is resistant to Gaussian noise up to 10 dB. The final accuracy for the classification of the first scenario (healthy and Covid-19) and the second scenario (healthy, Pneumonia and Covid-19) is about 99% and 95%, respectively. In addition, the results of the proposed method in terms of accuracy, precision, sensitivity, and specificity in comparison with recent research are promising. For example, the proposed method for classifying the first scenario has 100% and 99% sensitivity and specificity, respectively. In the field of medical application, the proposed method can be used as a physician's assistant during patient treatment.

Language:
Persian
Published:
Intelligent Systems in Electrical Engineering, Volume:14 Issue: 1, 2023
Pages:
75 to 91
https://www.magiran.com/p2572008  
سامانه نویسندگان
  • Sabahi، Kamel
    Corresponding Author (1)
    Sabahi, Kamel
    Assistant Professor Advanced tech, University of Mohaghegh Ardabili, اردبیل, Iran
اطلاعات نویسنده(گان) توسط ایشان ثبت و تکمیل شده‌است. برای مشاهده مشخصات و فهرست همه مطالب، صفحه رزومه را ببینید.
مقالات دیگری از این نویسنده (گان)