Evaluation of biological sustainability indicators of smart greenhouses

Message:
Article Type:
Research/Original Article (بدون رتبه معتبر)
Abstract:
Introduction

In many developing countries, natural resource conservation has not been a priority despite an increase in production, resulting in reduced agricultural productivity and compromised sustainability. Sustainable agriculture, as a rapidly expanding concept, emphasizes the economic, environmental, and social dimensions of producing food and energy for present and future generations. Smart agriculture, including the intelligentization of agricultural production units and greenhouses, is a key solution to address sustainability challenges by optimizing crop production through environmental control and reducing the impact of climate change. While sustainability is interpreted differently across fields and regions, there is a consensus on the need to use sustainability indicators to measure changes. This study aims to evaluate and validate the environmental sustainability indicators of smart greenhouses, which are unique to each region and country. By adopting a sustainability perspective, this study contributes to a better understanding of the multidimensional nature of agricultural sustainability and the need to consider the social and environmental implications of agricultural practices. The results of this study can help policymakers and practitioners in the field of smart agriculture to develop and implement sustainable agricultural practices that maximize productivity while minimizing environmental and social impacts. Therefore, this study was conducted with the aim of evaluating and validating the environmental sustainability indicators of smart greenhouses.

Research Methodology

This study targeted greenhouse managers in Isfahan province who utilized intelligent greenhouse management equipment in their production units due to the technological nature of the subject and climatic conditions. The agricultural Jihad Organization's statistics showed that there were 303 greenhouse units in the province, of which 170 were selected as the statistical sample. Isfahan province, known for its advanced technology and high greenhouse production, ranks fourth in greenhouse products in Iran, accounting for 12.33% of the country's greenhouse products.The data collection tool in this research is a questionnaire designed by the researcher in the form of a 5-option Likert scale including "very low", "low", "moderate", "much", "very much". To develop a measurement tool, the study identified three components of economic justification, environmental renewability, and social viability by systematically reviewing previous research on sustainable agriculture:Economic justificationSEC1 Increasing crop productivity using precision agricultureSEC2 reduction of consumption inputs in smart agricultureSEC3 increasing the income of smart greenhouses compared to traditional production unitsSEC4 Improving the quality and marketability of productsSEC5 Optimal management of water consumption in smart greenhousesSEC6 Optimum energy consumption in smart greenhousesEnvironmental renewal SEM1 Use of biological and non-chemical control to control pests and weedsSEM2 use of bio and green fertilizersSEM3 Planting modified and resistant seed varietiesSEM4 Utilization of renewable energiesSEM5 planning of recycling process and waste managementSEM6 Modifying and meeting the needs of the soil or planting bedSocial viabilitySSC1 Employing expert and educated personnel in the production unitSSC2 desire to learn and acquire knowledge of smart technologiesSSC3 Reducing human error in smart greenhouse managementSSC4 Creating sustainable employment for local youth in the regionConfirmatory factor analysis (CFA) was used to measure the factor structure of the environmental sustainability measurement index. The calculated indices in the research measurement model showed good validity and reliability. One of the advantages of using CFA to evaluate environmental sustainability indicators of smart greenhouses is its ability to systematically measure the validity and reliability of the measurement tool. This approach can be used continuously in similar environments in the future. This study contributes to the literature by providing a systematic approach to measure environmental sustainability in smart greenhouses, which can inform policymakers and practitioners in sustainable agriculture to maximize productivity while minimizing environmental and social impacts.

Results

Descriptive statistics revealed that most greenhouse owners were between the ages of 31-40 and held university degrees, and the majority of production units were personally owned. Given the need for human and financial resources, there is potential for developing the cooperative sector and knowledge-based companies in this field.The study introduced 15 indicators for measuring the environmental sustainability of greenhouses, and factor loading values and t values for each index showed that all identified factors played an important role in explaining the sustainability of smart greenhouses. The factor load values for the selected markers (above 0.5) were statistically significant at the error level of one percent (P<0.01).The confirmatory model revealed that the components of social livability and environmental renewability had a greater role than economic justification in explaining the underlying variable of sustainability, with path coefficients of 0.844 and 0.858, respectively. The results highlight the importance of paying more attention to natural resources and empowering active human resources in the sector. While most agricultural policies in Iran prioritize increasing productivity and efficiency, less attention is given to aspects of justice, social welfare, durability, stability, and compatibility. The study emphasizes that agricultural sustainability is a multidimensional phenomenon, and policymakers should consider other dimensions of efficiency beyond crop production and productivity.

Conclusion

This study has made a significant contribution to the development of scientific concepts and sustainability evaluation indicators in new technologies in the field of agriculture.Despite numerous studies on agricultural sustainability, few efforts have been made to design and validate sustainability measurement indicators specifically for smart agriculture, particularly in greenhouse production units. Valid and reliable indicators are crucial for the agricultural sector worldwide, as farmers, policy makers, decision makers, and agricultural extension workers require accurate information about agricultural activities.However, in most cases, these stakeholders lack the tools to evaluate such information, leading to incorrect decisions, policies, and actions due to the absence of documented knowledge and indices on the sustainability of smart agriculture. Therefore, this article presents a multi-step process for designing and validating sustainability indicators for smart greenhouses in future research. This process is essential to improve the accuracy and reliability of sustainability information and promote sustainable agricultural practices in the greenhouse sector.The development and validation of the environmental sustainability index in this study can have a significant impact on the direction of agricultural policies in the field of intelligentizing greenhouse activities. Researchers, decision-makers, and policymakers face significant challenges in achieving greenhouse sustainability, and this study provides valuable insights and recommendations for addressing these challenges.

Language:
Persian
Published:
Journal of Environmental Science Studies, Volume:9 Issue: 2, 2024
Pages:
8265 to 8275
magiran.com/p2645794  
دانلود و مطالعه متن این مقاله با یکی از روشهای زیر امکان پذیر است:
اشتراک شخصی
با عضویت و پرداخت آنلاین حق اشتراک یک‌ساله به مبلغ 1,390,000ريال می‌توانید 70 عنوان مطلب دانلود کنید!
اشتراک سازمانی
به کتابخانه دانشگاه یا محل کار خود پیشنهاد کنید تا اشتراک سازمانی این پایگاه را برای دسترسی نامحدود همه کاربران به متن مطالب تهیه نمایند!
توجه!
  • حق عضویت دریافتی صرف حمایت از نشریات عضو و نگهداری، تکمیل و توسعه مگیران می‌شود.
  • پرداخت حق اشتراک و دانلود مقالات اجازه بازنشر آن در سایر رسانه‌های چاپی و دیجیتال را به کاربر نمی‌دهد.
In order to view content subscription is required

Personal subscription
Subscribe magiran.com for 70 € euros via PayPal and download 70 articles during a year.
Organization subscription
Please contact us to subscribe your university or library for unlimited access!