genetic algorithms
در نشریات گروه مالی-
بورس مکانیزمی را فراهم می کند تا از طریق آن پس اندازهای اندک جامعه به سرمایه گذاری های کلان اقتصادی تبدیل شود ، توسعه متناسب دو بخش اصلی اقتصادیعنی بخش مالی و واقعی از اهمیت ویژه ای برخوردار می باشد. کشورهای توسعه یافته همواره بازار پول و سرمایه قدرتمندی داشته و دارند. عدم توسعه مناسب بازار سرمایه به عنوان زیر مجموعه مهمی از بخش مالی علاوه بر ایجاد فشار مضاعف بر سیستم پولی کشور، باعث شده که واحدهای تولیدی و خدماتی از مزایای یک بازار سرمایه فعال و پویا محروم گردند. در پژوهش حاضر، انتخاب و بهینه سازی سبد سهام با استفاده از سه الگوریتم، شامل الگوریتم ژنتیک، فرهنگی و ازدحام ذرات و اطلاعات 106 شرکت پذیرفته شده بورس اوراق بهادار تهران، در طی دوره زمانی 1386 الی 1393، صورت گرفته است. در این پژوهش برای رسم مرز کارا و تشکیل پرتفوی بهینه، از واریانس به عنوان عامل اصلی خطر پذیری استفاده شده است.
نتایج مطالعه از بررسی تفاوت بین میانگین بازده سرمایه گذاری در سبدهای منتخب براساس سه روش نشان از عدم وجود اختلاف معنادار بین سه الگوریتم دارد. از طرفی به منظور مقایسه الگوریتم ها و بررسی برتری الگوریتم ها، دو روش بهینه سازی از دو بعد تابع هدف و نسبت بازده و ریسک مورد مقایسه قرار گرفت.از آنجایی که الگوریتم ازدحام ذرات مقدار تابع هدف کمتری داشته یا به عبارتی با کمترین خطا به بهترین نتیجه رسیده است، نسبت به الگوریتم های دیگر بهتر عمل کرده است و نشان دهنده برتری نسبی این الگوریتم در انتخاب سبد سهام بهینه است.کلید واژگان: الگوریتم ژنتیک، الگوریتم ازدحام ذرات، الگوریتم فرهنگی، بهینه سازی سبد سهامOne of the important features of industrialized and developing countries is the presence of money, dynamic market and capital. In other words, if the saving of individuals will be directed by appropriate mechanism to the manufacturing sector it brings efficiency not only to the owners of capital but also it can be considered as the most important funding for launching economic projects of society.
In present study, three stock selection and optimization algorithms including genetic algorithm, particle swarm algorithm, and cultural algorithm has been studied. So, 106 listed companies in Tehran Stock Exchange, since 2007 to 2014 were tested in order to investigate this.
In this study, for plotting the efficient frontier and comprising of the optimal portfolio half of the variance is considered as the main factor of risk. This research investigates the significant difference between the averages of investment output in selected baskets based on three methods. The statistical analysis of the results shows that there is no difference between the three algorithms. However, in order to compare the two algorithms and analysis of superiority of algorithms, these two methods of optimization have been compared from two aspects of objective function, output ratio and risk.
Since the objective function of particle swarm algorithms was less, in other word, it has the least error and gain the best result so in comparing to other algorithms it has been performed better which shows the relative superiority of this algorithms in the selection of the optimal portfolio.Keywords: genetic algorithms, particle swarm algorithms, cultural algorithms -
تعیین زمان بهینه و قیمت مناسب خرید و فروش سهام نقش بسزایی در تصمیمات سرمایه گذاری در بازار سرمایه و سود و زیان سرمایه گذار دارند. می توان از سیستم های هوشمند غیرخطی همچون شبکه عصبی مصنوعی، شبکه عصبی فازی و الگوریتم ژنتیک برای پیش بینی تغییرات قیمت سهام استفاده نمود. در این مقاله به طراحی و ارائه یک مدل پیش بینی قیمت سهام با استفاده از سیستم استنتاج عصبی فازی انطباقی و ترکیب آن با الگوریتم ژنتیک پرداخته شده است که در آن از دو دسته مختلف متغیرهای فنی و بنیادی به عنوان ورودی های مدل استفاده می شود. خروجی های حاصل از شبکه نشان می دهد میزان خطای پیش بینی هر دو دسته از ورودی های بنیادی و فنی تا حد قابل قبولی پایین است و این سیستم ها از توانایی لازم برای پیش بینی قیمت روزانه سهام برخوردار می باشند. برای ارزیابی دقت مدل، آزمون من ویتنی انجام گردید که با توجه به ورودی های مشخص شده برای دو حالت بنیادی و فنی، مشاهده گردید که تقریبا تفاوت معناداری بین نتایج پیش بینی قیمت در این دو روش وجود ندارد. هر دو روش بنیادی و فنی به شرط آنکه حداقل یکی از ورودی های آنها وابستگی خطی با قیمت داشته باشد، قادر به پیش بینی قیمت روز آتی با ضریب خطای نسبتا قابل قبولی خواهند بود. همچنین در خصوص سهامی که میزان نوسانات قیمتی آن زیاد است، استفاده از رویکرد شبکه عصبی منجر به افزایش سطح خطای پیش بینی خواهد گردید و توصیه می شود از این روش برای پیش بینی قیمت سهام پرنوسان استفاده نشود.کلید واژگان: شبکه های عصبی مصنوعی، منطق فازی، الگوریتم های ژنتیکی، شاخص های فنی و بنیادیSelection of appropriate time and price in trading stocks has an important role in investment decisions on profit and loss of investors in capital markets. Nonlinear intelligent systems, such as artificial neural networks, fuzzy- neural networks and genetic algorithms, would be used to forecast stock prices motions. In this article,a model of stock prices motions has been designed using Adaptive Neuro- Fuzzy Inference System (ANFIS)integrated with genetic algorithm, in which two different groups of fundamental and technical variables have been employed as model inputs. According to Model outputs,the rate of forecasting errors in both groups of inputs is not significant and these systems are able to forecast daily stock prices. The Mann-Whitney test has been used to measure the accuracy of models and it was found that there is no significant difference between results of prices forecasted in both methods. Both methods are able to forecast next day price with an insignificant error provided that at least one of the inputs in both methods has a linear dependence with price, . Also, results show that these systems do not work properly to forecast prices of high volatility stocks.Keywords: artificial neural networks, Fuzzy Logic, Genetic algorithms, technical, fundamental indicators
-
نگاه به تاریخچه بازار بورس حکایت از این نکته دارد که نگرانی عمده شرکت های بورسی در گام نخست برای ورود به بازار سرمایه این است که چه قیمتی برای عرضه عمومی اولیه مناسب بوده و آیا می توانند سرمایه گذاران را برای خرید سهام خود مجاب کنند.در کنار این موضوع ، از نگرانی سرمایه گذاران نیز که قیمت سهام عرضه شده را واقعی یا کاذب تصور کنند، نمی توان گذشت.این پژوهش سعی براین دارد که باا استفاده از روش غیر خطی این معضل را بر طرف نماید.
پژوهش حاضر به ارایه مدل قیمت گذاری عرضه عمومی اولیه سهام در بورس اوراق بهادار تهران می پردازد. دوره تحقیق مورد مطالعه از سال 1382 تا 1393 می باشد.جامعه آماری تحقیق 145 شرکت ورودی به بورس اوراق بهادار تهران در این بازه زمانی و نمونه آماری با توجه به شرط عدم سرمایه گذاری بودن شرکت ها و مدون بودن بودجه و دسترسی به اطلاعات شرکت، به 103 شرکت تقلیل پیدا کرد.
شبکه پیشنهادی یک شبکه چند لایه رو به جلو با بهینه سازی الگوریتم ژنتیک برای متغیر های مورد استفاده در تعیین قیمت سهام شرکت های جدید الورود به بورس می باشد .دوره 12 سااله با انتخاب 12 متغیر تاثیر گذار بر قیمت عرضه عمومی اولیه و 1 متغیر وابسته )قیمت عرضه اولیه(شبکه مناسبی را در قیمت گذاری صحیح نسبت به سایر مدل های خطی بیان شده در این پژوهش ارایه داده است. نتایج حاصل از مدل با استفاده از 4 معیار ارزیابی RMSE،MAE،R-SQUARE،U-THEIL بیانگر قیمت گذاری صحیح مدل پیشنهادی در اکثر موارد می باشد.کلید واژگان: عرضه عمومی اولیه، (Ipos) الگوریتم ژنتیک، شبکه عصبی، رگرسیونConsidering stock market history, major concerns in the first phase to enter the capital market is that what the right price for the initial public offering and could they convince investors to buy shares. Besides that, there are also investors concerns about the accuracy of the pricing stocks.
This study uses nonlinear method has resolved this issue.
Study provides a model pricing initial public offering of shares on the Tehran Stock Exchange. The research period between 1382 to 1393.
Research population 145 enterprises entering the Tehran Stock Exchange in this period of time and the sample of study is according to the condition of the Company and continuous investment of funds and access to company data, were reduced to 103 companies. The proposed network is a neural network optimized the genetic algorithm to determine the price of shares of new companies entering the stock exchange.With a choice of 12 variables affecting the price of initial public offerings and one dependent variable (Initial Public Offering price) suitable model to _ pricing than other linear models presented. The results of the fourth measure, RMSE, MAE, R-SQUARE, U-THEIL reflect the correct pricing proposed model, in most cases.Keywords: Initial public offering, Genetic algorithms, Neural networks, Regression -
یکی از ویژگی های مهم کشورهای صنعتی و توسعه یافته، وجود بازار فعال و پویای پول و سرمایه است. به عبارت دیگر، اگر پس اندازهای افراد با مکانیسم صحیح به بخش تولید هدایت شوند، علاوه بر بازدهی که برای صاحبان سرمایه به ارمغان می آورد، می تواند به عنوان مهمترین عامل تامین سرمایه، برای راه اندازی طرح های اقتصادی جامعه نیز مفید باشد. در پژوهش حاضر، انتخاب و بهینه سازی سهام با استفاده از سه الگوریتم، شامل الگوریتم ژنتیک، فرهنگی و ازدحام ذرات مورد بررسی قرار گرفته است. از این رو، 106 شرکت پذیرفته شده بورس اوراق بهادار تهران، در طی دوره زمانی 1386 الی 1393، به منظور بررسی این موضوع مورد آزمون قرار گرفتند.
این پژوهش به بررسی تفاوت بین میانگین بازده سرمایه گذاری در سبدهای منتخب بر اساس سه روش پرداخته و آزمون های آماری مربوط به نتایج حاکی از عدم وجود اختلاف معنادار بین سه الگوریتم می باشد. از طرفی به منظور مقایسه دو الگوریتم و بررسی برتری الگوریتم ها، این دو روش بهینه سازی از دو بعد تابع هدف و نسبت بازده و ریسک مورد مقایسه قرار گرفتند و از آنجایی که الگوریتم ژنتیک مقدار تابع هدف کمتری داشته یا به عبارتی با کمترین خطا به بهترین نتیجه رسیده است، نسبت به الگوریتم های دیگر بهتر عمل کرده است و نشان دهنده برتری نسبی این الگوریتم در انتخاب سبد سهام بهینه است.کلید واژگان: مدل مارکویتز، الگوریتم ژنتیک، الگوریتم ازدحام ذرات، الگوریتم فرهنگیOne of the important features of industrialized and developing countries is the presence of money, dynamic market and capital. In other Words, if the saving of individuals will be directed by appropriate mechanism to the manufacturing sector it brings efficiency not only to the owners of capital but also it can be considered as the most important funding for launching economic projects of society.
In present study, three stock selection and optimization algorithms including genetic algorithm, particle swarm algorithm, and cultural algorithm has been studied. So, 106 listed companies in Tehran Stock Exchange, since 2007 to 2014 were tested in order to investigate this.
In this study, for plotting the efficient frontier and comprising of the optimal portfolio half of the variance is considered as the main factor of risk. This research investigates the significant difference between the averages of investment output in selected baskets based on three methods. The statistical analysis of the results shows that there is no difference between the three algorithms. However, in order to compare the two algorithms and analysis of superiority of algorithms, these two methods of optimization have been compared from two aspects of objective function, output ratio and risk.
Since the objective function of genetic algorithms was less, in other word, it has the least error and gain the best result so in comparing to other algorithms it has been performed better which shows the relative superiority of these algorithms in the selection of the optimal portfolio.Keywords: Genetic Algorithms, particle swarm algorithms, cultural algorithms -
اهداف کلاسیک دانش مالی مبنی بر موازنه بازده و ریسک و تحلیل آن در فرصت های مختلف، دستمایه بسیاری از پژوهش های مدیریت مالی بوده است. استفاده از شاخص های تکنیکال یکی از ابزارهای مدیریت پرتفوی به شمار می رود. این پژوهش به دنبال استفاده از این شاخص ها در استخراج قواعد معاملات سهام است. دوره زمانی پژوهش از ابتدای سال 1388 تا پایان سال 1393 و نمونه شامل 216 شرکت می باشد. در این پژوهش در دوره زمانی 1388 تا 1390 با استفاده از شاخص های تکنیکال و الگوریتم ژنتیک چند هدفه با دو هدف ماکزیمم کردن بازده و مینیمم کردن ریسک مدلی برای مدیریت بهینه پرتفوی به دست آمد و در دوره زمانی 1391 تا 1393 این مدل در مدیریت بهینه پرتفوی سهام به کار گرفته شد. به منظور ارزیابی این مدل، نتایج به دست آمده با شاخص کل بورس اوراق بهادار تهران مقایسه شد و مشخص گردید با استفاده از شاخص های تکنیکال می توان عملکرد بهتری نسبت به بازار داشت.کلید واژگان: تحلیلهای تکنیکال، مدیریت پرتفوی، الگوریتم ژنتیکRisk-return tradeoff and its analysis in alternative investments as a classic goal of finance have been the main subject of many researches in financial management. The use of technical indicators is a portfolio management tools. This research aims to use these indicators in mining stocks trading rules. The period of investigation is from beginning of 1388 until the end of 1393 and the sample of study is including 216 companies listed in TSE. In the period from 1388 to 1390 by using technical indicators and genetic algorithm with aim for maximize return and minimize risk, we obtain a model for portfolio optimization and in the period from 1391 to 1393 this model was used in portfolio management. In order to evaluate this model, the results were compared with the market index and found that by using technical indicators can outperform the market.Keywords: Genetic Algorithms, Technical Indicators
-
در سالهای اخیر مدیریت سود در پژوهش های دانشگاهی توجه زیادی را به خود جلب کرده است. هدف این پژوهش پیش بینی مدیریت سود از طریق اقلام تعهدی اختیاری مبتنی بر مدل جونز تعدیل شده است. در این پژوهش از دو مدل شبکه عصبی مصنوعی و مدل ترکیبی الگوریتم ژنتیک – شبکه عصبی به عنوان الگوی موفقجهت پیش بینی مدیریت سود مبتنی بر جونز تعدیل شده در بورس اوراق بهادار تهران استفاده شده است. نمونه مورد استفاده در این پژوهش شامل 570 سال-شرکت بین سالهای 1387 الی 1392 می باشد. یافته های پژوهش نشان داد که شبکه عصبی مصنوعی از توانایی بالایی در پیش بینی مدیریت سود، نسبت به مدل خطی جونز تعدیل شده برخوردار است. همچنین یافته ها حاکی از آن است که الگوریتم ژنتیک به عنوان مدل بهینه ساز می تواند در افزایش توان پیش بینی شبکه عصبی مصنوعی و بهینه کردن وزن های آن برای پیش بینی مدیریت سود مبتنی بر مدل جونز تعدیل شده تاثیر بسزایی داشته باشد.کلید واژگان: مدیریت سود، اقلام تعهدی اختیاری، شبکه عصبی مصنوعی، الگوریتم ژنتیکIn recent years, earnings management in university research has attracted much attention. The aim of this study is to predict earnings management through discretionary accruals based on adjusted Jones model. In this study, two models of artificial neural networks and genetic algorithms - neural network hybrid model as a successful model to predict earnings management based on adjusted Jones model were used in the Tehran Stock Exchange. The sample used in this study is consisted of 570 firm-year between 2008 to 2013. The results showed that neural networks have a high ability to predict earnings management rather than the adjusted Jones linear model. The findings also suggest that, the genetic algorithm through optimizing artificial neural network weights is able to increase power of artificial neural network to predict earnings management.Keywords: earnings management, discretionary accruals, Artificial Neural Networks, genetic algorithms
-
طراحی و استقرار مدل رتبه بندی اعتباری در نظام بانکی نقش مهمی در بالا بردن کارایی تخصیص منابع به مشتریان هدف دارد. در این تحقیق با هدف تدوین مدلی جهت ارزیابی ریسک اعتباری مشتریان حقوقی بانک از ماشین بردار پشتیبان (SVM) و الگوریتم ژنتیک بهره گرفته شده است. بدین منظور، مطالعه ای بر روی متغیرهای مالی282 شرکت که طی سال های 1387 تا 1390 از بانک تجارت تسهیلات دریافت کرده اند، صورت گرفته است. در این پژوهش برای بهینه سازی ورودی های ماشین بردار پشتیبان از الگوریتم ژنتیک بهره گرفته شده است، توان بسیار بالای الگوریتم ژنتیک در انتخاب نقاط بهینه، همواره این اطمینان خاطر را برای استفاده کننده فراهم می آورد که نقاط بهینه پیشنهادی، نقاط بهینه بهتری برای مساله خواهند بود. در مدل هیبریدی GA-SVM، الگوریتم ژنتیک داده های ورودی مدل SVM را بهینه می سازد.
یافته های تحقیق نشان می دهد مدل هیبریدی GA-SVM نسبت به مدل SVM عملکرد بهتری در شناسایی مشتریان خوش حساب و بد حساب و پیش بینی ریسک اعتباری مشتریان دارد.کلید واژگان: رتبه بندی اعتباری، ریسک اعتباری، ماشین بردار پشتیبان، الگوریتم ژنتیکDesign and implementation of credit rating model in the banking system plays an important role in enhancing the efficiency of resource allocation is to target customers. In this research aims to develop a model for evaluating the credit risk of the bank's corporate clients have been used Support Vector Machine (SVM) and Genetic Algorithms (GA). Therefore, a study has been on the financial variables of 282 companies during the years 2007 to 2010, have received loans from TEJARAT bank. In this research, to optimize the input of support vector machine is used of genetic algorithms. The power of the genetic algorithm to select the optimum points, always provides confidence that the optimal-made for the proposed going to be higher optimum points. In the hybrid model GA-SVM, genetic algorithm optimizes SVM model inputs the data.
Research findings show GA-SVM hybrid model performed better than the SVM model in the identifying good customer accounts and bad customer accounts and credit risk prediction.Keywords: Credit rating, Credit risk, Support Vector Machine, genetic algorithms -
دستیابی به رشد مستمر و مداوم اقتصادی و به موجب آن توسعه اقتصادی را می توان از زمره اهدافی قلمداد نمود که تمام کشورها در پی دستیابی به آن می باشند. در این راستا بانک ها نقش بسیار مهمی در پیشرفت و توسعه اقتصادی هر کشور ایفا می نمایند. در حال حاضر با توجه به تعداد قابل توجه بانک های دولتی و خصوصی در کشور پیش بینی کارایی آن ها اهمیت ویژه ای پیدا کرده است. هدف از این پژوهش، مدلسازی و پیش بینی کارایی بانک های دولتی و خصوصی کشور با استفاده از مدل های شبکه عصبی مصنوعی، شبکه عصبی فازی و الگوریتم ژنتیک می باشد. در این پژوهش ابتدا با استفاده از مدل تحلیل پوششی داده ها و با در نظر گرفتن جمع کل دارایی ها و تعداد کل شعب به عنوان ورودی های مدل و سود و زیان خالص و مانده تسهیلات اعطایی و مطالبات به عنوان متغیرهای خروجی مدل به بررسی کارایی بانک ها در بین سال های 1386 تا 1390 پرداخته شد. در مرحله بعد، از رویکرد رگرسیون چند متغیره، شبکه عصبی مصنوعی، شبکه عصبی فازی و الگوریتم ژنتیک جهت پیش بینی کارایی بانک ها استفاده شده است. نتایج ارزیابی نشان داد که مدل شبکه عصبی فازی نسبت به سایر مدل ها دارای بالاترین دقت در پیش بینی کارایی بانک ها می باشد. همچنین بر اساس نتایج تحلیل حساسیت ورودی ها به وسیله شبکه عصبی، ورودی سود و زیان خالص به عنوان ورودی که بیشترین تاثیر در کارایی بانک ها دارد، معرفی شده است
کلید واژگان: پیش بینی کارایی بانک ها، تحلیل پوششی داده ها، شبکه عصبی مصنوعی، شبکه عصبی فازی، الگوریتم ژنتیکContinuous growth and development of the economics is considered as the main objectives which the firms are seeking to achieve. In doing so, the banks play key roles in the economic growth and development. Due to the increasing numbers of the public and private banks in Iran, predicting their efficiency has attracted significant attentions. This study aims at modeling and predicting the efficiency of the public and private banks by using artificial neural networks, Fuzzy neural networks and genetic algorithms. Using data envelopment analysis (DEA) and considering the total assets and total number of branches as the inputs of the model, the banks’ efficiency has been examined during a period from 2007 to 2011. The outputs of the model include the net profit or loss, the balance of granted credits and receivables. As the next step, the multivariate regression approach, artificial neural network, fuzzy neural network and genetic algorithms have been employed to predict the efficiency of the banks. The findings revealed that the fuzzy neural network is the most precise model in comparison with the other models of predicting efficiency. Based on the sensitivity analysis of the inputs by the neural networks, the net profit or loss has been known as the input with the highest impact on the banks’ efficiency.
Keywords: predicting the efficiency of banks, Data envelopment analysis (DEA), Neural networks, Fuzzy neural networks, Genetic algorithms
- نتایج بر اساس تاریخ انتشار مرتب شدهاند.
- کلیدواژه مورد نظر شما تنها در فیلد کلیدواژگان مقالات جستجو شدهاست. به منظور حذف نتایج غیر مرتبط، جستجو تنها در مقالات مجلاتی انجام شده که با مجله ماخذ هم موضوع هستند.
- در صورتی که میخواهید جستجو را در همه موضوعات و با شرایط دیگر تکرار کنید به صفحه جستجوی پیشرفته مجلات مراجعه کنید.