block-pulse functions
در نشریات گروه ریاضی-
In this paper, we combine the two-dimensional (2D) Haar wavelet functions (HWFs) with the block-pulse functions (BPFs) to solve the 2D linearVolterra-Fredholm integral equations (2D-L(VF)IE), so we present a new hybrid computational effcient method based on the 2D-HWFs and 2D-BPFs to approximate the solution ofthe 2D linear Volterra-Fredholm integral equations. In fact, the HWFs and theirrelations to the BPFs are employed to derive a general procedure to formoperational matrix of Haar wavelets. Theoretical erroranalysis of the proposed method is done. Finally some examples arepresented to show the effectiveness of the proposed method.Keywords: Haar Wavelet, Block-Pulse Functions, Operational Matrix, Two-Dimensional Integral
-
The method used in this research consists of a hybrid of the Block-Pulse functions and third-kind Chebyshev polynomials for solving systems of Fredholm integral differential equations. Through the use of an operational matrix representing the derivation, the problem is represented by a system of algebraic equations. Some examples are provided to illustrate the simplicity and effectiveness of the utilized method. In addition, results of the presented method have been compared with those obtained from the Tau method and variational iteration method that reveal the proposed scheme to be more applicable.
Keywords: System Of Fredholm Integral Differential Equations, Hybrid Method, Block-Pulse Functions, Third-Kind Chebyshev Polynomials, Operational Matrix -
Iranian Journal of Numerical Analysis and Optimization, Volume:12 Issue: 2, Summer and Autumn 2022, PP 315 -333Differential equations of fractional order have been the focus of many studies due to their frequent appearance in various applications in fluid mechanics, biology, physics, and engineering. In general, it is not easy to derive the analytical solutions to most of these equations. Therefore, it is vital to develop some reliable and efficient techniques to solve fractional differential equations. A numerical method for solving fractional differential equations is proposed in this paper. The method is based on a hybrid of Block-pulse and orthonormal Bernstein functions. Convergence analysis is given, and numerical examples are introduced to illustrate the effectiveness and simplicity of the method.Keywords: Fractional differential equations, Hybrid Functions, Block-Pulse Functions, Bernstein polynomials
-
در مقاله حاضر ، روش جدیدی برای حل تقریبی معادلات انتگرال دیفرانسیلی با مشتقات جزیی دو بعدی ولترا - فردهلم با شرایط اولیه با استفاده ازترکیب چند جمله های برنشتاین دو بعدی و توابع بلوک پالس ارایه شده است. برای این منظور، ماتریس عملیاتی انتگرال و مشتق و انتگرال ضرب خارجی معرفی می شود که از توابع ترکیبی است. استفاده از این ماتریسهای عملیاتی ساختار محاسباتی مورد استفاده برای مجموعه ای از معادلات جبری را برای حل معادلات انتگرال دیفرانسیل جزیی بطور قابل توجهی ساده می کند. تجزیه و تحلیل همگرایی و برخی از نتایج عددی نیز برای نشان دادن اثربخشی و صحت روش ارایه شده است.
کلید واژگان: چند جمله ای برنشتاین دو بعدی، توابع بلوک پالس، معادلات دیفرانسیل انتگرال دیفرانسیل ولترا - فردهلم با مشتقات جزیی، ماتریس عملیاتیIn the present paper, a new method is introduced for the approximate solution of two-dimensional mixed Volterra-Fredholm Partial integro-differential equations with initial conditions using twodimensional hybrid Bernstein polynomials and Block-Pulse functions. For this purpose, an operational matrix of product and integration of the cross-product and differentiation are introduced that essentially of hybrid functions. The use of these operational matrices simplifies considerably the structure of the computational used for a set of algebraic equations methods for the solution of partial integro-differential equations.. The use of these operational matrices simplifies considerably the structure of the computational used for a set of algebraic equations methods for the solution of partial integro-differential equations.. The use of these operational matrices simplifies considerably the structure of the computational used for a set of algebraic equations methods for the solution of partial integro-differential equations. Convergence analysis and some numerical results are presented to illustrate the effectiveness and accuracy of the method.
Keywords: Two-dimensional Bernstein polynomials, Block pulse functions, Volterra&ndash, Fredholm Partial integro-differential equations, Operational matrix -
In this paper, we consider Volterra integral equations of the first kind. Then by extending the modified Block-pulse functions(MBPFs) on the Volterra integral equation of the second kind obtained from Volterra integral equation of the first kind, we obtain the approximate solution. Some theorems are proved to provide an error analysis for proposed method. Numerical examples show that the proposed scheme has a suitable degree of accuracy.
Keywords: Volterra integral equation of the first kind, Block-pulse functions, Operational matrix, Function expansion, Convergence -
International Journal of Mathematical Modelling & Computations, Volume:12 Issue: 1, Winter 2022, PP 1 -14
In this paper, we present a new numerical technique based on Block-pulse functions to solve two-dimensional Volterra-Fredholm integral equations of the second kind. To produce Block-pulse functions, the orthogonal Legendre polynomials is used. Furthermore, operational matrix is applied to convert two-dimensional Volterra-Fredholm integral equations to a linear algebraic system. The convergence analysis of the new method is discussed. Finally, some numerical examples are given to confirm the applicability and efficiency of the new method for solving two-dimensional Volterra-Fredholm integral equations of the second kind.
Keywords: Volterra-Fredholm integral equations, Block-pulse functions, Operational matrix, legendre polynomials -
در این مقاله، مدل کسری عفونت HIV در سلولهای CD4+T بررسی قرار میگیرد. در این مدل، مشتقات کسری در مفهوم کاپوتو در نظر گرفته میشوند. در این روش، دستگاه معادلات دیفرانسیل معمولی از مرتبه کسری به یک دستگاه معادلات جبری تبدیل میگردد که میتوان آن را با استفاده از یک روش عددی مناسب حل نمود. همچنین، در بحث آنالیز خطا، کران بالای خطا ارایه شده است. کارایی و دقت روش، با استفاده از یک نمونه عددی برای برخی مشتقات صحیح و کسری بررسی و برخی مقایسه ها و نتایج گزارش شده است. در این مقاله، مدل کسری عفونت HIV در سلولهای CD4+T بررسی قرار میگیرد. در این مدل، مشتقات کسری در مفهوم کاپوتو در نظر گرفته میشوند. در این روش، دستگاه معادلات دیفرانسیل معمولی از مرتبه کسری به یک دستگاه معادلات جبری تبدیل میگردد که میتوان آن را با استفاده از یک روش عددی مناسب حل نمود. همچنین، در بحث آنالیز خطا، کران بالای خطا ارایه شده است. کارایی و دقت روش، با استفاده از یک نمونه عددی برای برخی مشتقات صحیح و کسری بررسی و برخی مقایسه ها و نتایج گزارش شده است.
کلید واژگان: مشتق کسری، دستگاه معادلات دیفرانسیل، ماتریس عملیاتی، توابع بلاک-پالس، چندجملهایهای لژاندرIn this paper, a hybrid function method based on combination of block-pulse functions and Legendre polynomials is used for solving a fractional model of HIV infection of CD4+ T cells in which fractional derivatives are considered in Caputo sense. Using this method, the system of fractional ordinary differential equations which is the mathematical model for the fractional model of HIV infection of CD4+T cells, is reduced into a system of algebraic equations. This system can be solved by a numerical method. Also, convergence analysis of the method is studied and an upper bound of the error is obtained. To show efficiency and accuracy the proposed method, a numerical example is simulated and some comparisons and results are reported. In this paper, a hybrid function method based on combination of block-pulse functions and Legendre polynomials is used for solving a fractional model of HIV infection of CD4+ T cells in which fractional derivatives are considered in Caputo sense. Using this method, the system of fractional ordinary differential equations which is the mathematical model for the fractional model of HIV infection of CD4+T cells, is reduced into a system of algebraic equations. This system can be solved by a numerical method. Also, convergence analysis of the method is studied and an upper bound of the error is obtained. To show efficiency and accuracy the proposed method, a numerical example is simulated and some comparisons and results are reported.
Keywords: Fractional derivative, System of differential equations, Operational matrix, Block-pulse functions, Legendre polynomials -
International Journal Of Nonlinear Analysis And Applications, Volume:12 Issue: 2, Summer-Autumn 2021, PP 1577 -1589
In this article, we extended an efficient computational method based on Walsh operational matrix to find an approximate solution of nonlinear fractional order Volterra integro-differential equation, First, we present the fractional Walsh operational matrix of integration and differentiation. Then by applying this method, the nonlinear fractional Volterra integro-differential equation is reduced into a system of algebraic equation. The benefits of this method are the low-cost of setting up the equations without applying any projection method such as collocation, Galerkin, etc. The results show that the method is very accuracy and efficiency.
Keywords: Walsh functions, Operational matrix, Block-pulse functions, Fractional calculus -
در این مقاله ، معادلات غیر خطی با نویز سفید افزودنی را در نظر می گیریم ، که حل آنها با روش های تحلیلی غیرممکن است. توابع بلاک پالس به عنوان توابع پایه ای برای حل این معادلات ارایه شده است. به منظور بررسی اعتبار این روش ، از روش تجزیه آدومین برای حل تقریبی معادلات تصادفی دافینگ استفاده شده است. نتایج نشان می دهد که روش پیشنهادی بسیار موثر است.
کلید واژگان: معادله دافیگ، تصادفی، روش تجزیه، توابع بلاک پالسIn this paper, we consider the nonlinear equations with the additive white noise, which are commonly impossible to be solved by an analytical procedure. The Block-Pulse functions as basic functions are proposed to solve these equations. In order to investigate the validity of this method, we used the Adomian decomposition method to approximate the solution of the stochastic Duffing equations. The results reveal that the proposed method is very effective.
Keywords: Duffing's equation, stochastic, Block-pulse functions, Decomposition method -
In this paper, numerical techniques are presented for solving system of nonlinear integro-differential equations. The method is implemented by applying hybrid of Legendre polynomials and Block-Pulse functions. The operational matrix of integration and the integration of the cross product of two hybrid function vectors are derived in order to transform the system of nonlinear integro-differential equations into a system of algebraic equations. Finally, the accuracy of the method is illustrated through some numerical examples and the corresponding results are presented.Keywords: Integro-differential equations, Hybrid functions, Block-Pulse functions, Legendre polynomials, operational matrix
-
Journal of Mathematical Analysis and its Contemporary Applications, Volume:2 Issue: 1, Spring 2020, PP 9 -16In this paper, a new simple direct method to solve nonlinear Fredholm-Volterra integral equations is presented. By using Block-pulse (BP) functions, their operational matrices and Taylor expansion a nonlinear Fredholm-Volterra integral equation converts to a nonlinear system. Some numerical examples illustrate accuracy and reliability of our solutions. Moreover, the effect of noise shows our method is stable.Keywords: Nonlinear Volterra-Fredholm integro-differential equation, Block-pulse functions, Taylor expansion, Operational matrices
-
در این تحقیق روشی مستقیم در حل معادلات انتگرال فردهلم-ولترا غیرخطی ارایه می کنیم. با بکارگیری توابع بلک پالس و ماتریسهای عملیاتی و همچنین بسط تیلور معادله را به یک دستگاه غیرخطی تبدیل می کنیم. با چند مثال عددی دقت و کارایی روش را نشان می دهیم.
کلید واژگان: معادلات انتگرال فردهلم-ولترا غیرخطی، توابع بلک پالس و ماتریسهای عملیاتیIn this paper, a new simple direct method to solve nonlinear Fredholm-Volterra integral equations is presented. By using Block-pulse (BP) functions, their operational matrices and Taylor expansion a nonlinear Fredholm-Volterra integral equation converts to a nonlinear system. Some numerical examples illustrate accuracy and reliability of our solutions. Also, effect of noise shows our solutions are stable.
Keywords: Nonlinear Fredholm-Volterra integral equation, Block-pulse functions, Operational matrices -
In this paper, we propose direct methods to solve linear delay differential equations (DDEs) based on vector forms of Block-Pulse Functions (BPFs) and Triangular Functions (TFs). Operational matrix of integration of BPFs and TFs are applied to transform LDDE to a linear system of algebraic equations. Further, some numerical examples are presented to indicate the reliability and accuracy of these methods. Convergence analysis of the present method has been discussed.
Keywords: Linear delay differential equations, Block-Pulse Functions, Triangular Functions, Direct method -
In this paper, first, a numerical method is presented for solving generalized linear and nonlinear Lane-Emden type equations. The operational matrix of derivative is obtained by introducing hybrid third kind Chebyshev polynomials and Block-pulse functions. This matrix with the tau method is then utilized to transform the differential equation into a system of algebraic equations. Finally, the convergence analysis is investigated and the efficiency of the proposed method is indicated by some numerical examples
Keywords: Hybrid functions, chebyshev polynomials, block-pulse functions, operational matrix of derivative, lane-emden typeequations -
در این مقاله یک روش عددی مناسب برای تقریب انتگرال های وینری که جواب دقیق آنها در دسترس نیست یا پیدا کردن جواب دقیق آنها فرآیند بسیار مشکلی است با استفاده از توابع پایه ای بلاک پالس معرفی می شود. تحلیل خطای روش ارائه می گردد. مثال های عددی ارائه شده مبین این است که این روش از دقت مطلوبی برخوردار می باشد. مزیت روش عددی مورد بحث، انعطاف پذیری و سادگی استفاده آن است.کلید واژگان: حرکت براونی، انتگرال های وینر، توابع بلاک پالسIn this paper, a suitable numerical method based on block pulse functions is introduced to approximate the Wiener integrals which the exact solution of them is not exist or it may be so hard to find their exact solutions. Furthermore, the error analysis of this method is given. Some numerical examples are provided which show that the approximation method has a good degree of accuracy. The main advantage of this approximation method is its flexibility and simple applicability.Keywords: Brownian motion, Wiener integrals, Block pulse functions
-
روش توابع مثلثی می تواند تعمیمی از روش بلاک پالس باشد. جواب معادلات انتگرال نوع دوم با استفاده از روش توابع مثلثی، به یک دستگاه معادلات غیرخطی منجر می شود. در این مقاله، دستگاه غیرخطی حاصل توسط یک سیستم دینامیکی حل شده است. حل دستگاه غیرخطی حاصل از روش سیستم های دینامیکی نسبت به روش عددی نیوتن دارای این مزیت است که در این روش تعداد مجهولات می تواند از تعداد معادلات بیشتر باشد. همچنین نقطه شروع سیستم می تواند نشدنی باشد. ثابت شده است که سیستم دینامیکی حاصل، پایدار بوده و پاسخ این سیستم از روش عددی رانگ کوتای مرتبه 4 حاصل می شود. نتایج حاصل قابل مقایسه با نتایج روش های عددی مشابه است و در اکثر حالات نتایج بدست آمده بهتر از نتایج روش های عددی دیگر است. تاثیر روش جدید با ذکر مثال هایی بررسی شده است.کلید واژگان: معادلات انتگرال فردهلم-ولترا، سیستم های غیرخطی، سیستم های دینامیکی، توابع مثلثی، توابع بلاک پالسThe method of triangular functions (TF) could be a generalization form of the functions of block-pulse (Bp)ý. ýThe solution of second kind integral equations by using the concept of TF would lead to a nonlinear equations systemý. ýIn this articleý, ýthe obtained nonlinear system has been solved as a dynamical systemý. ýThe solution of the obtained nonlinear system by the dynamical system through the Newton numerical method has got a particular priorityý, ýin thatý, ýin this methodý, ýthe number of the unknowns could be more than the number of equationsý. ýBesidesý, ýthe point of departure of the system could be an infeasible pointý. ýIt has been proved that the obtained dynamical system is stableý, ýand the response of this system can be achieved by using of the fourth order Runge-Kuttaý. ýThe results of this method is comparable with the similar numerical methods; in most of the casesý, ýthe obtained results by the presented method are more efficient than those obtained by other numerical methodsý. ýThe efficiency of the new method will be investigated through examples.Keywords: Second kind Fredholm-Volterra integral equations?, ?Nonlinear systems?, ?Dynamical systems?, ?Triangular functions?, ?Block-pulse functions
-
International Journal of Mathematical Modelling & Computations, Volume:6 Issue: 3, Summer 2016, P 221This article proposes a direct method for solving three types of integral equations with time delay. By using operational matrix of integration, integral equations can be reduced to a linear lower triangular system which can be directly solved by forward substitution. Numerical examples shows that the proposed scheme have a suitable degree of accuracy.Keywords: Block pulse functions, Operational matrix, Integral equations with time delay, Delay operational matrix.Block pulse functions, Operational matrix, Integral equations with time delay, Delay operational matrix
-
In this article the nonlinear mixed Volterra-Fredholm integral equations are investigated by means of the modified threedimensional block-pulse functions (M3D-BFs). This method converts the nonlinear mixed Volterra-Fredholm integral equations into a nonlinear system of algebraic equations. The illustrative examples are provided to demonstrate the applicability and simplicity of our scheme
Keywords: Nonlinear mixed Volterra-Fredholm integral equations, Block-pulse functions, Operational matrix, Orthogonal functions -
APPLICATION OF HAAR WAVELETS IN SOLVING NONLINEAR FRACTIONAL FREDHOLM INTEGRO-DIFFERENTIAL EQUATIONSA novel and e ective method based on Haar wavelets and Block Pulse Functions (BPFs) is proposed to solve nonlinear Fredholm integro-di erential equations of fractional order. The operational matrix of Haar wavelets via BPFs is derived and together with Haar wavelet operational matrix of fractional integration are used to transform the mentioned equation to a system of algebraic equations. Our new method is based on this matrix and the vector forms for representation of Haar wavelets. In addition, an error and convergence analysis of the Haar- approximation is discussed. Since this approach does not need any integration, all calculations would be easily implemented, and it has several advantages in reducing the computational burden. Some examples are included to demonstrate the validity and applicability of the technique.Keywords: Fredholm integro, di erential equations, Haar wavelets, Operational matrix, Frac, tional calculus, Block Pulse Functions
-
In this paper, the Block pulse functions (BPFs) and their operational matrices of integration and differentiation are used to solve Li´enard equation in a large interval. This method converts the equation to a system of nonlinear algebraic equations whose solution is the coefficients of Block pulse expansion of the solution of the Li´enard equation. Moreover, this method is examined by comparing the results with the results obtained by the Adomian decomposition method (ADM) and the Variational iteration method (VIM)
Keywords: Block pulse functions, the li´enard equation, operational matrices
- نتایج بر اساس تاریخ انتشار مرتب شدهاند.
- کلیدواژه مورد نظر شما تنها در فیلد کلیدواژگان مقالات جستجو شدهاست. به منظور حذف نتایج غیر مرتبط، جستجو تنها در مقالات مجلاتی انجام شده که با مجله ماخذ هم موضوع هستند.
- در صورتی که میخواهید جستجو را در همه موضوعات و با شرایط دیگر تکرار کنید به صفحه جستجوی پیشرفته مجلات مراجعه کنید.