microarray analysis
در نشریات گروه پزشکی-
Gastroenterology and Hepatology From Bed to Bench Journal, Volume:16 Issue: 3, Summer 2023, PP 297 -306Aim
This study aimed to find lncRNAs and mRNAs that were expressed differently by combining microarray datasets from different studies. This was done to find important target genes in gastric cancer for anti-cancer therapy.
BackgroundGastric cancer (GC) is the fourth most frequent and second-most deadly malignancy worldwide. Thus, genetic diagnosis and treatment should focus on genetic and epigenetic variables. Based on several studies, disordered expression of non-coding RNAs (ncRNAs), such as lncRNAs, regulate gastric cancer invasion and metastasis. Besides, lncRNAs cooperatively regulate gene expression and GC progression.
MethodsWe obtained differentially expressed mRNAs (DEmRNAs) and lncRNAs (DElncRNAs) from three GC tissue microarray datasets by meta-analysis and screened genes using the "Limma" package. Then, using the RNAInter database, we allocated DEmRNAs to each DElncRNA. ClusterProfiler and GOplot programs were used to analyze function enrichment pathways and gene ontologies for final DEmRNAs.
ResultsA total of 9 differentially expressed lncRNAs (DElncRNAs) (5 up-regulated and 4 down-regulated), and 856 DEmRNAs (451 up-regulated and 405 down-regulated) between tumor and adjacent normal samples were found. Finally, 117 differentially expressed mRNAs were predicted as interactors of six DElncRNAs (H19, WT1-AS, EMX2OS, HOTAIR, ZEB1-AS1, and LINC00261).
ConclusionIn order to promote cancer therapeutics and give knowledge on the process of carcinogenesis, our study projected a network of drug-gene interactions for discovered genes and presented relevant prospective biomarkers for the prognosis of patients with stomach cancer.
Keywords: Biomarker, Gastric cancer, Messenger RNA (mRNA), Long non-coding RNAs (lncRNAs), Microarray analysis -
Objective
In microarray datasets, hundreds and thousands of genes are measured in a small number of samples, and sometimes due to problems that occur during the experiment, the expression value of some genes is recorded as missing. It is a difficult task to determine the genes that cause disease or cancer from a large number of genes. This study aimed to find effective genes in pancreatic cancer (PC). First, the K-nearest neighbor (KNN) imputation method was used to solve the problem of missing values (MVs) of gene expression. Then, the random forest algorithm was used to identify the genes associated with PC.
Materials and MethodsIn this retrospective study, 24 samples from the GSE14245 dataset were examined. Twelve samples were from patients with PC, and 12 samples were from healthy control. After preprocessing and applying the fold-change technique, 29482 genes were used. We used the KNN imputation method to impute when a particular gene had MVs. Then, the genes most strongly associated with PC were selected using the random forest algorithm. We classified the dataset using support vector machine (SVM) and naïve bayes (NB) classifiers, and F-score and Jaccard indices were reported.
ResultsOut of the 29482 genes, 1185 genes with fold-changes greater than 3 were selected. After selecting the most associated genes, 21 genes with the most important value were identified. S100P and GPX3 had the highest and lowest importance values, respectively. The F-score and Jaccard value of the SVM and NB classifiers were 95.5, 93, 92, and 92 percent, respectively.
ConclusionThis study is based on the application of the fold change technique, imputation method, and random forest algorithm and could find the most associated genes that were not identified in many studies. We therefore suggest researchers use the random forest algorithm to detect the related genes within the disease of interest.
Keywords: Classification, Microarray Analysis, Neoplasms, Pancreas -
MicroRNAs (miRNAs) can participate in airway remodeling by regulating immune molecule expression. Here, we aimed to identify the differential miRNAs involved in airway remodeling. Airway remodeling was induced by ovalbumin in female BALB/C mice. The differentially expressed miRNAs were screened with microarray. GO (Gene Ontology) and KEGG enrichment analysis was performed. The miRNA target gene network and miRNA target pathway network were constructed. Verification with real-time PCR and Western blot was performed. We identified 63 differentially expressed miRNAs (50 up-regulated and 13 down-regulated) in the lungs of ovalbumin-induced airway remodeling mice. Real-time PCR confirmed that 3 miRNAs (mmu-miR-1931, mmu-miR-712-5p, and mmu-miR-770-5p) were significantly up-regulated, and 4 miRNAs (mmu-miR-128-3p, mmu-miR-182-5p, mmu-miR-130b-3p, and mmu-miR-20b-5p) were significantly down-regulated. The miRNA target gene network analysis identified key mRNAs in the airway remodeling, such as Tnrc6b (trinucleotide repeat containing adaptor 6B), Sesn3 (sestrin 3), Baz2a (bromodomain adjacent to zinc finger domain 2a), and Cux1 (cut like homeobox 1). The miRNA target pathway network showed that the signal pathways such as MAPK (mitogen-activated protein kinase), PI3K/Akt (phosphoinositide 3-Kinase/protein kinase B), p53 (protein 53), and mTOR (mammalian target of rapamycin) were closely related to airway remodeling in asthma. Collectively, differential miRNAs involved in airway remodeling (such as mmu-miR-1931, mmu-miR-712-5p, mmu-miR-770-5p, mmu-miR-128-3p mmu-miR-182-5p, and mmu-miR-130b-3p) as well as their target genes (such as Tnrc6b, Sesn3, Baz2a, and Cux1) and pathways (such as MAPK, PI3K/Akt, p53, mTOR pathways) have been identified. Our findings may help to further understand the pathogenesis of airway remodeling.
Keywords: Airway remodeling, Computational biology, MicroRNAs, Microarray analysis -
Background
Tenascin‑C (TNC) is a large glycoprotein of the extracellular matrix which associated with poor clinical outcomes in several malignancies. TNC over‑expression is repeatedly observed in several cancer tissues and promotes several processes in tumor progression. Until quite recently, more needs to be known about the potential mechanisms of TNC as a key player in cancer progression and metastasis.
Materials and MethodsIn the present study, we performed a bioinformatics analysis of breast and colorectal cancer expression microarray data to survey TNC role and function with holistic view. Gene expression profiles were analyzed to identify differentially expressed genes (DEGs) between normal samples and cancer biopsy samples. The protein‑protein interaction (PPI) networks of the DEGs with CluePedia plugin of Cytoscape software were constructed. Furthermore, after PPI network construction, gene‑regulatory networks analysis was performed to predict long noncoding RNAs and microRNAs associated with TNC and cluster analysis was performed. Using the Clue gene ontology (GO) plugin of Cytoscape software, the GO and pathway enrichment analysis were performed.
ResultsPPI and DEGs‑miRNA‑lncRNA regulatory networks showed TNC is a significant node in a huge network, and one of the main gene with high centrality parameters. Furthermore, from the regulatory level perspective, TNC could be significantly impressed by miR‑335‑5p. GO analysis results showed that TNC was significantly enriched in cancer‑related biological processes.
ConclusionsIt is important to identify the TNC underlying molecular mechanisms in cancer progression, which may be clinically useful for tumor‑targeting strategies. Bioinformatics analysis provides an insight into the significant roles that TNC plays in cancer progression scenarios.
Keywords: Gene regulatory network, microarray analysis, protein interaction maps, Tenascin‑C -
Background
Aspergillus fumigatus is the most common species causing invasive aspergillosis (IA), a life-threatening infection with more than 80% mortality. Interactions between A. fumigatus and human blood platelets lead to intravascular thrombosis and localized infarcts. To better understand A. fumigatus pathogenesis, we aimed to analyze the genetic basis of interactions between the pathogen and blood platelets.
MethodsA bioinformatic pipeline on microarray gene expression dataset, including analysis of differentially expressed genes (DEGs) using Limma R package and their molecular function, as well as biological pathways identification, was conducted to find the effective genes involved in IA. In the wet phase, the gene expression patterns following fungal exposure to blood platelets at 15, 30, 60, and 180 min were evaluated by quantitative reverse transcriptase-PCR analysis.
ResultsThree genes encoding aspartic endopeptidases including (Pep1), (Asp f 13), and (β-glucanase) were the standing candidates. The invasion-promoting fungal proteinase-encoding genes were down-regulated after 30 min of hyphal incubation with blood platelets, and then up-regulated at 60 and 180 min, although only Pep1 was greater than the control at the 60and 180 min time points. Also, the same genes were downregulated in more the clinical isolates relative to the standard strain CBS 144.89.
ConclusionsOur findings delineate the possible induction of fungal-encoded proteinases by blood platelets. This provides a new research line into A. fumigatus’ molecular pathogenesis. Such insight into IA pathogenesis might also guide researchers toward novel platelet-based therapies that involve molecular interventions, especially in IA patients.
Keywords: Aspergillus fumigatus, Blood Platelets, Gene Expression, Microarray Analysis, Proteinases -
BackgroundMicroarray technology is an accurate method for recognition of disease association gene alterations. However, there still is not an effective approach for the evaluation of gene expression in ovarian cancer.ObjectivesA reliable approach is described to identify genes associated with ovarian cancer.MethodsMicroarray gene expression data analysis was applied to correct systematic differences through four different normalization methods; LOESS, 3D LOESS, and neural network (NN3, NN4). Then, three different clustering methods of K-means, fuzzy C-means, and hierarchical methods were examined on corrected gene expression values. The proposed approach was tested on a reliable source of genes’ information, where the entropy of genes in samples and Euclidean distance were used for gene selection.ResultsOur findings revealed that a neural-network-based normalization method could better control the effects of non-biological variations from microarray data. Moreover, the hierarchical clustering was more effective compared to other methods, and resulted in the identification of three genes, including BC029410, DUSP2, and ILDR1, as candidates for disease-association genes.ConclusionsAccording to the finding of the present study, hierarchical clustering with nonlinear-based normalization could have the ability to prioritize genes for ovarian cancerKeywords: Cluster Analysis, Entropy, Gene Expression, Gene Ontology, Microarray Analysis, Neural Networks, Ovarian Neoplasms
-
BackgroundTumor stage is one of the most reliable prognostic factors in the clinical characterization of colorectal cancer. The identification of genes associated with tumor staging may facilitate the personalized molecular diagnosis and treatment along with better risk stratification in colorectal cancer.ObjectivesThe study aimed to identify genetic signatures associated with tumor staging and patients’ survival in colorectal cancer and recognize the patients' risk category for clinical outcomes based on transcriptomic data.MethodsIn this retrospective cohort study, two available transcriptomic datasets, including 232 patients with colorectal cancer under accession number GSE17537 and GSE17536 were used as discovery and validation sets, respectively. A Bayesian sparse group selection method in the discovery set was applied to identify the associated genes with the tumor staging. Then further screening was performed using survival analysis, and significant genes were used to develop a gene signature model. Finally, the robust performance of the signature model was assessed in the validation set.ResultsA total of 56 genes were significantly associated with the tumor staging in colorectal cancer. Survival analysis resulted in a shortlist of 19 genes, including ADH1B (P = 0.012), AHI (P = 0.006), AKAP12 (P = 0.018), BNIP3 (P = 0.015), CLDN11 (P = 0.015), CST9L (P = 0.028), DPP10 (P = 0.029), FBXO33 (P = 0.036), HEBP (P = 0.025), INTS4 (P = 0.003), LIPJ (P = 0.001), MMP21 (P = 0.006), NGRN (P = 0.014), PAFAH1B2 (P = 0.035), PCOLCE2 (P = 0.009), PIM1 (P = 0.007), TBKBP1 (P = 0.003), TCEB3B (P = 0.001), and TIPARP (P = 0.018), developing the signature model and validation. In both discovery and validation sets, the discrimination ability of the signature model to categorize patients with colorectal cancer into low- and high-risk subgroups for mortality and recurrence at 3- and 5-years showed good discrimination performances, with the area under the receiver operating characteristic curve (ROC) ranging from 0.64 to 0.88. It also had good sensitivity (discovery set 63.1%, validation set 61.7%) and specificity (discovery set 75.0%, validation set 59.3%) to discriminate between early- and late-stage groups.ConclusionsWe identified a 19-gene signature associated with tumor staging and survival of colorectal cancer, which may represent potential diagnosis and prognosis markers, and help to classify patients with colorectal cancer into low- or high-risk subgroups.Keywords: Bayesian Approach, Colorectal Cancer, Gene Expression Signatures, Microarray Analysis, Prognosis, Recurrence, Overall Survival, Tumor Staging, Classification, Gene Ontology, Risk, Transcriptome
-
IntroductionEstrogen receptor-positive (ER-positive) breast cancer is a subgroup of breast tumors that is more likely to respond to hormone therapy. ER-positive and ER- negative breast cancers tend to show different patterns of metastasis because of different signaling cascade and genes that are activated by estrogen response. Genetic factors can contribute to high rates of metastasis in ER-positive breast cancer. Fucosyltransferase 8 (FUT8) is a member of fucosyltransferases family and plays an important role in α-1,6 linkage to the first GlcNAc residue of N-glycans chain. In this study, for the first time, we predicted FUT8 by bioinformatics tools as a novel therapeutic target for ER-positive breast cancer.MethodsMicroarray gene expression data of 9 patients with ER+ve and 10 individuals with ER-ve breast cancer was extracted from Geodatasets. Gene expression of two ER+ and ER- patients was compared with logfc and then sorted by their p-values. Moreover, the most related pathway, protein interaction, and function of this gene were identified with GeneCard and DAVID databases.ResultsFUT8 was highly expressed in patients with ER+ve breast cancer that may be associated with the metastasis. FUT8 encodes an enzyme that belongs to fucosyltransferases family. The expression of this gene may contribute to the malignancy features of cancer cells and their invasive and metastatic capabilities.ConclusionsHaving in mind FUT8 hyperexpression, its function in malignancy, and its pathways, it can be concluded that FUT8 can be used as a therapeutic target in ER+ve breast cancer.Keywords: Fucosyltransferases, Breast Neoplasms, Microarray Analysis, Signal Transduction
-
BackgroundHuman herpes viruses, as common viruses, not only affect mainly the skin, mucosa, and nervous tissue, but also can cause a variety of serious diseases in children.ObjectivesThe aim of this study was to determine the sensitivity and specificity of multiplex PCR-based DNA microarray technology in comparison with PCR method and IgM ELISA.MethodsA total of 108 blood samples from children with viral infections were collected and analyzed by multiplex PCR-based DNA microarray technology, PCR method, and IgM ELISA.ResultsOf 108 specimens, 16 were positive which gave a positive rate of 14.8%. Most of the patients were infected with EBV and HCMV. The sensitivity and specificity of this technology for detecting human herpes viruses were 100% when compared to PCR method. The crude agreement between multiplex PCR-based DNA microarray technology and IgM ELISA for detecting human herpes viruses was 95.4%.ConclusionsThe results indicated that multiplex PCR-based DNA microarray technology is a rapid auxiliary diagnostic method for simultaneous detection of the seven common herpes viruses with high sensitivity and specificity.Keywords: Microarray Analysis, Herpesviruses, Children
-
ObjectiveDespite the huge efforts, chronic kidney disease (CKD) remains as an unsolved problem in medicine. Many studies have shown a central role for transforming growth factor beta-1 (TGFβ-1) and its downstream signaling cascades in the pathogenesis of CKD. In this study, we have reanalyzed a microarray dataset to recognize critical signaling pathways controlled by TGFβ-1.Materials And MethodsThis study is a bioinformatics reanalysis for a microarray data. The GSE23338 dataset was downloaded from the gene expression omnibus (GEO) database which assesses the mRNA expression profile of TGFβ-1 treated human kidney cells after 24 and 48 hours incubation. The protein interaction networks for differentially expressed (DE) genes in both time points were constructed and enriched. In addition, by network topology analysis, genes with high centrality were identified and then pathway enrichment analysis was performed with either the total network genes or with the central nodes.ResultsWe found 110 and 170 genes differentially expressed in the time points 24 and 48 hours, respectively. As the genes in each time point had few interactions, the networks were enriched by adding previously known genes interacting with the differentially expressed ones. In terms of degree, betweenness, and closeness centrality parameters 62 and 60 nodes were considered to be central in the enriched networks of 24 hours and 48 hours treatment, respectively. Pathway enrichment analysis with the central nodes was more informative than those with all network nodes or even initial DE genes, revealing key signaling pathways.ConclusionWe introduced a method for the analysis of microarray data that integrates the expression pattern of genes with their topological properties in protein interaction networks. This holistic novel approach allows extracting knowledge from raw bulk omics data.Keywords: Chronic Kidney Disease, Microarray Analysis, Protein Interaction Maps, Systems Biology, Transforming Growth Factor Beta, 1
-
سابقه و هدفلوسمی از سرطان های شایع در جهان است. یکی از مهم ترین روش ها برای کشف و پیش بینی لوسمی میلوژنیک و لنفوسیتیک حاد، استفاده از DNA افراد و اطلاعات ژنتیکی آن ها می باشد. تکنولوژی ریز آرایه، ابزاری برای بررسی بیان هزاران ژن در حداقل زمان است. تحلیل مجموعه داده های ریز آرایه بدون کمک آنالیز آماری و روش های یادگیری ماشین ممکن نیست. در این مطالعه با استفاده از مجموعه داده های ریز آرایه و روش های یادگیری ماشین به تشخیص انواع لوسمی پرداخته شد.مواد و روش هاداده های مورد استفاده در این پژوهش توصیفی، بیان 7129 ژن مربوط به 72 بیمار مبتلا به لوسمی بود که با استفاده از فناوری ریز آرایه به دست آمد. سپس با استفاده از این داده ها، تشخیص لوسمی میلوژنیک حاد(AML) و لوسمی لنفوسیتیک حاد(ALL) با روش طبقه بندی ناپارامتری هسته، تابع پایه شعاعی ناهمسانگرد با استفاده از معیارهای نسبت بهره و بهره اطلاعاتی انجام شد.یافته هاروش پیشنهادی طبقه بندی ناپارامتری با استفاده از معیار بهره اطلاعاتی با انتخاب230 ژن مهم و با استفاده از معیار نسبت بهره با انتخاب 86 ژن مهم با دقت 06/97٪ ، قادر به تشخیص انواع لوسمی میلوژنیک و لنفوسیتیک است، در حالی که روش طبقه بندی ناپارامتری هسته ، تابع پایه شعاعی با 7129 ژن دارای دقت 29/35٪ است.نتیجه گیرینتایج این مطالعه نشان داد که استفاده از داده های بیان ژن و روش پیشنهادی با معیار نسبت بهره قادر به تشخیص لوسمی با دقت بالایی است. بنابراین به نظر می رسد این روش می تواند در تشخیص دقیق تر انواع لوسمی کمک کند تا تصمیمات مناسب تری در مورد نحوه تشخیص و درمان بیماران گرفته شود.کلید واژگان: لوسمی، بیان ژن، آنالیز ریز آرایه، یادگیری ماشینBackground And ObjectivesLeukemia is a cancer type in the world. One of the most accurate methods for detection and prediction of Acute Myeloid Leukemia and Acute Lymphoblastic Leukemia is to use DNA and genetic information of people. Microarray technology is a tool to study the expression of thousands of genes in shortest possible time. Analyzing the microarray datasets may not be possible without the statistical analysis and machine learning techniques. In this paper, microarray data sets and machine learning techniques are used for the diagnosis of leukemia.Materials And MethodsThe data used in this descriptive study are the expression of 7129 genes of 72 patients with leukemia which have been achieved by the microarray technology. Then, the diagnosis of AML and ALL was performed using the microarray data based on anisotropic radial basis function with the gain ratio and information gain.ResultsThe proposed method using information gain with the selection of 230 important genes and using gain ratio with the selection of 86 important genes was able to detect AML and ALL with accuracy of 97. 06%, whereas non-parametric kernel classification method based on the radial basis function has the accuracy of 35. 29٪ with 7129 genes.ConclusionsThe results of this study showed that the gene expression data and proposed method with gain ratio method are able to detect leukemia with high accuracy. Therefore, it seems that proposed method can help to accurately diagnose leukemia for a better decision making about the diagnosis of diseases and treatment of patients.Keywords: Leukemia, Gene Expression, Microarray Analysis, Machine Learning
-
Diffuse large B-cell lymphoma is the most common type of non-Hodgkin lymphoma. MicroRNAs (miRNAs) are endogenous small RNA, which can regulate gene expression at the post-transcriptional level. MiRNA profiling has shown a great potential as novel diagnostic and prognostic biomarkers. The present study was performed at the Nemazee Teaching Hospital (Shiraz, Iran) from 2011 to 2013.The aim of this study was to assess the deregulation of miRNAs profiles in DLBL against hyperplasic reactive lymph node as a normal. This could serve as a biomarker for DLBL. The miRCURY LNATM microarray was used on the total RNA, which was extracted from formalin-fixed paraffin-embedded tissue of 24 de novo diffuse large B-cell lymphoma patients and 14 normal lymph nodes. The greatest changes were detected in miR-4284 and miR-4484 level in patients lymphoma samples. These miRNAs can act as a diagnostic biomarker for DLBL.Keywords: Lymphoma, Large B, Cell, Diffuse, MicroRNAs, Microarray Analysis
-
Journal of Medical Microbiology and Infectious Diseases, Volume:3 Issue: 1, Winter-Spring 2015, PP 29 -34IntroductionIn Iran, invasive nontyphoidal Salmonella (iNTS) disease causes severe bacteremic illness among childrenMethodsThe microarray analysis enables identification of the strains that have the 90kb Salmonella typhimurium virulence plasmid, presence or absence of the Salmonella pathogenicity islands (SPIs), adherence factors and other virulence determinants. Twelve isolates of S. typhimurium obtained from faeces of children with gastroenteritis were analyzed by microarray technique.ResultsThe virulence plasmid was present in 83.33% of isolates and all the isolates contained the SPI-4 and SPI-5. None of the strains had the cytolethal distending toxin, cdtB. All strains were positive for rck and mig-14. The adherence genes were present in all the strains in the range of 51.55% to 73.20% of the adherence genes interrogated in the microarray. Two strains were the least pathogenic S. typhimurium.ConclusionMicroarray analysis proved to be a valuable tool in confirmation of serotyping results and genetic characterization of S. Typhimurium.Keywords: Salmonella typhimurium, Gastroenteritis, Microarray Analysis
-
سابقه و هدفتکنولوژی ریزآرایه، یک تصویر کلی از میزان بیان هزاران ژن به طور هم زمان ارایه می دهد. تفسیر داده های ریز آرایه بدون آنالیز آماری و روش های هوش مصنوعی ممکن نیست. هدف این مقاله، تشخیص انواع لوسمی حاد با استفاده از مجموعه داده های ریز آرایه و الگوریتم های داده کاوی بود.مواد و روش هادر این مطالعه توصیفی از داده های بیان 7129 ژن مربوط به 72 بیمار مبتلا به لوسمی استفاده شد. سپس با انتخاب ژن های مهم بر اساس روش های ضریب همبستگی، بهره اطلاعاتی، نسبت بهره و امتیاز Fisher و با استفاده از روش های جداکننده خطی، ماشین بردار پشتیبان، k نزدیک ترین همسایه، بیزین ساده، شبکه بیزین، نزدیک ترین میانگین، رگرسیون لجستیک، شبکه عصبی پرسپترون چند لایه و درخت تصمیم J48 برروی ژن های انتخاب شده به تشخیص لوسمی میلوژنیک و لنفوسیتیک حاد پرداخته شد.یافته هاروش های نزدیک ترین میانگین، ماشین بردار پشتیبان، k نزدیک ترین همسایه، بیزین ساده و شبکه عصبی پرسپترون چند لایه با استفاده از 39 ژن انتخاب شده توسط نسبت بهره با دقت 100٪، قادر به تشخیص لوسمی میلوژنیک و لنفوسیتیک حاد هستند. هم چنین روش ماشین بردار پشتیبان با استفاده از 87 ژن انتخاب شده توسط بهره اطلاعاتی و روش شبکه عصبی پرسپترون چند لایه با استفاده از 133 ژن انتخاب شده توسط بهره اطلاعاتی با دقت 100٪، قادر به تشخیص آن می باشند.نتیجه گیرینتایج این مطالعه نشان داد که انتخاب ژن ها و الگوریتم های داده کاوی قادر به تشخیص انواع لوسمی با دقت بسیار بالایی هستند، بنابراین با استفاده از این روش ها، می توان تصمیمات مناسبی در مورد نحوه تشخیص و درمان بیماران گرفت.
کلید واژگان: لوسمی لنفوسیتیک حاد، لوسمی میلوژنیک حاد، آنالیز ریز آرایه، داده کاویBackground And ObjectivesMicroarray technology represents the expression of thousands of genes simultaneously. Microarray analysis may not be possible without statistical analysis and artificial intelligence methods. The aim of this paper is to diagnose acute leukemia using microarray data and data mining algorithms.Materials And MethodsThe expression of 7129 genes of 72 patients with leukemia was used in this study. Then, by the selection of important genes based on correlation coefficient, information gain, gain ratio and fisher score criteria and by the use of linear discriminat, support vector machine, k nearest neighbor, naïve Bayes, Bayes net, nearest mean, logistic regression, multilayer perceptron neural network and J48 decision tree methods on the selected genes, acute myeloid and lymphoblastic leukemia were attemted to be diagnosed.ResultsThe methods of nearest mean, support vector machine, k nearest neighbor, naïve Bayes, and multilayer perceptron neural network are able to detect acute myeloid and lymphoblastic leukemia using 39 selected genes by the gain ratio with 100 percent accuracy. Moreover, support vector machine method using 87 selected genes by information gain and support vector machine method using 133 selected genes by information gain are able to detect acute myeloid and lymphoblastic leukemia with 100 percent accuracy.ConclusionsThe results of this study showed that gene selection and data mining algorithm are able to diagnose leukemia with high accuracy. Therefore, appropriate decisions can be made using these methods about the how of the diagnosis and treatment of patients.Keywords: Acute Lymphoid Leukemia, Acute Myeloid Leukemia, Microarray Analysis, Data Mining -
زمینه و هدفسرطان یکی از دلایل عمده مرگ و میر در دنیای امروز است و به عنوان یکی از مهم ترین مشکلات سلامت جوامع محسوب می شو د. اکثر روش های پیشنهادی جهت دسته بندی سرطان به کمک داده های بیان ژن مانند یک جعبه سیاه عمل کرده و قابلیت تفسیرپذیری زیستی ندارند. این مطالعه با هدف معرفی روشی بهینه با قابلیت تفسیر داده های بیان ژن انجام شد.روش بررسیدر این مطالعه، روش ترکیبی پالایشی - پوششی برای انتخاب ویژگی زیرمجموعه ای از ژن های موثر در سرطان مورد استفاده قرار گرفت که این عمل باعث کاهش چشمگیر تعداد نمونه ها در مقایسه با تعداد ژن ها شد. همچنین در این مطالعه با ترکیب روش های خوشه بندی فازی، مجموعه های تقریبی و اعتبارسنجی K- دسته ای؛ به گسسته سازی داده ها، تولید و کاهش قوانین و ارزیابی نتایج پرداخته شد. براین اساس، روش جدیدی با قابلیت تفسیرپذیری زیستی و استخراج معانی از داده های بیان ژن معرفی گردید که این روش Fuzzy Rough set Classification نامیده شد.یافته هابا استفاده از روش پالایشی – پوششی انتخاب ویژگی در ریزآرایه لمفوما، از میان 4029 ژن، 6 ژن انتخاب شد. در روش دسته بندی تقریبی فازی جهت تولید یک مدل دسته بند با قابلیت تفسیر داده های بیان ژن، دو قانون تولید شده است.نتیجه گیریدر این روش با استفاده از توابع رتبه بندی، مهم ترین قوانین فازی انتخاب شد که علاوه بر قابلیت تولید یک مدل دسته بند کارآمد، قابلیت تفسیر داده های بیان ژن را ممکن می سازد. یکی دیگر از ویژگی های برجسته این روش، حل موفقیت آمیز مسئله عدم تناسب میان تعداد نمونه ها و ژن ها در ریزآرایه ها به روش پیشنهادی پالایشی - پوششی انتخاب ویژگی بوده است.
کلید واژگان: لمفوما، تشخیص اولیه سرطان، سطح بیان ژن، تحلیل میکرو آرایهBackground And ObjectivesCancer is one the major causes of mortality in today's world, and is considered as one of the most important health problems in societies. Most of the proposed methods for classifying cancer by gene expression data act as a black box and lack biological interpretability. The aim of this study was to introduce an optimal approach with the interpretability of gene expression.MethodsIn this study, the combined filter-wrapper feature selection method was used to select a subset of cancer-causing genes, which this method significantly reduced the number of samples in comparison with the number of genes. Also, in this study, data discretization, generation and reduction of rules, and evaluation of results were performed by combining the fuzzy clustering methods, rough sets theory, and K-set validation. Accordingly, a new method with biological interpretability and meaning extraction from gene expression data was introduced, which is called “Fuzzy Rough Set Classification”.ResultsUsing filter-wrapper feature selection method for lymphoma microarray, 6 genes were selected from 4029 genes. In fuzzy roughest classifier method, two rules were generated in order to develop a classifier model with interpretability of gene expression.ConclusionIn this method, using ranking functions, the most important fuzzy rules were selected, which in addition to generation of an efficient model, the interpretability of gene expression data is made possible. Another prominent feature of this method was successful solution of the problem of disproportion between the number of samples and genes in microarrays by the proposed filter-wrapper feature selection method.Keywords: Lymphoma, Early detection of cancer, Gen expression level, Microarray analysis -
سابقه و هدفبه منظور توسعه استراتژی های جدید برای جلوگیری از ورم پستان از نوع اشرشیاکلی، داشتن فهم درست از جزئیات و مکانیسم های مولکولی درگیر در پاسخ های ایمنی میزبان به این باکتری ضروری می باشد. در این تحقیق با استفاده از اطلاعات ترانسکریپتومیکس موجود به مطالعه بیوانفورماتیکی این بیماری پرداخته شد.مواد و روش هاداده های حاصل از مطالعه گیلبرت و همکارانش که با استفاده از تکنیک ریزآرایه انجام شده بود از سایت GEO استخراج گردید. بر اساس داده های استخراج شده با استفاده از پایگاه داده String برهمکنش بین پروتئین ها شناسایی شده و توسط نرم افزار Cytoscape شبکه برهمکنش پروتئین – پروتئین آن رسم گردید. آنالیز های شبکه جهت یافتن هاب ها و دسته بندی بر اساس GO برای هر شبکه توسط CluGO-Clue-pedia انجام شد.یافته هاشبکه برهمکنش پروتئین - پروتئین از ژن هایی با بیان متفاوت در بافت پستان گاو آلوده شده با لیپوپلی ساکارید برگرفته از باکتری E. coli بعد از گذشت 3 و 6 ساعت تعیین شد. بخش های مشترک دو شبکه انتخاب شد و در آنالیز شبکه حاصله، ژن های IL6، IFIH1، PARP14، IL1B، ISG15، GRO1، IFIT3، CCL5، ICAM1، IRF9 و NOS2 دارای بیش ترین درجه بودند که به عنوان هاب های شبکه عمل می کنند. آنالیز خوشه بندی بر اساس GO، مهم ترین فرآیندهای بیولوژیکی، عمل کردهای ملکولی، جایگاه سلولی، فرآیندهای سیستم ایمنی و مسیرهای حاکم بر اساس پایگاه KEGG تعیین شد.نتیجه گیرینتایج نشان داد که با افزایش زمان حضور پاتوژن در میزبان تعداد برهمکنش ها در پروتئین های هاب هم راه با افزایش است بنابراین این پروتئین ها می توانند کاندیدای هدف های دارویی باشندکلید واژگان: اشریشیاکولی، التهاب پستان گاو، نقشه های برهمکنش پروتئین، تجزیه و تحلیل ریزآرایه، ترانسکریپتومBioinformatics analysis of E. coli causing mastitis in Holstein dairy cattle by usingmicroarray dataKoomesh, Volume:17 Issue: 1, 2015, PP 214 -223IntroductionMastitis is the inflammation of the mammary gland. One of its major pathogens is Escherichia coli. In order to develop new strategies for prevention of E. coli causing mastitis, it is necessary to have a clear understanding of the details and molecular mechanisms involved in host immunological responses to the pathogen. In this study by using available transcriptomic data, bioinformatics analysis of the diseases was performed.Materials And MethodsThe data in this study was extracted from GEO web site, based on Gilbert’s microarray study on the mammary tissue transcriptome. Protein-protein interactions (PPIs) were identified by using String database and PPI networks generated by using Cytoscape software. In order to recognize and cluster the hubs based on GO, the network analysis was carried out by using ClueGO-Clue-Pedia.ResultsThe PPI network resulted from differentially expressed genes (DEGs) in contaminated mammary tissue with E. coli crude lipo-polysaccharide (LPS) were determined after 3 and 6 hours. PPI network was performed from common segments of the two PPI networks. Analysis of this new network showed that genes (IL6, IFIH1, PARP14, IL1B, ISG15, GRO1IFIT3, CCL5, ICAM1, IRF9 and NOS2) had the greatest degree and function as hubs. The most significant biological processes (BP), molecular functions (MF), cellular compartments (CC), immunological system and dominant pathways based on KEGG database were identified through GO-based cluster analysis of the network.ConclusionThis study suggests that expansion of pathogen presence in the host tissue would lead to the increase in the number of interactions in the hub proteins. So these proteins can be introduced as drug targets.Keywords: Escherichia coli, Mastitis bovine, Protein interaction maps, Microarray analysis, Transcriptome
-
BackgroundThe microarray technology is in needed of cost-effective, low background noise and stable substrates for successful hybridization and analysis.MethodsIn this research, we developed a three-dimentional stable and mechanically reliable microarray substrates by coating of two polymeric layers on standard microscope glass slides. For fabrication of these substrates, a thin film of oxidized agarose was prepared on the Poly-L-Lysine (PLL) coated glass slides. Unmodified oligonucleotide probes were spotted and immobilized on these double layered thin films by adsorption on the porous structure of the agarose film. Some of the aldehyde groups of the activated agarose linked covalently to PLL amine groups; on the other side, they bound to amino groups of adsorbed tail of biomolecules. These linkages were fixed by UV irradiation at 254 nm using a CL-1000 UV. These prepared substrates were compared to only agarose-coated and PLL-coated slides.ResultsAtomic Force Microscope (AFM) results demonstrated that agarose provided three-dimensional surface which had higher loading and bindig capacity for biomolecules than PLL-coated surface which had two-dimensional surface. The nano-indentation tests demonstrated the prepared double coating was more reliable and flexible for mechanical robotic spotting. In addition, the repeated indentation on different substrates showed uniformity of coatings. The stability of novel coating was sufficient for hybridization process. The signal-to-noise ratio in hybridization reactions performed on the agarose-PLL coated substrates increased two fold and four fold compared to agarose and PLL coated substrates, respectively.ConclusionFinally, the agarose-PLL microarrays had the highest signal (2920) and lowest background signal (205) in hybridization, suggesting that the prepared slides are suitable in analyzing wide concentration range of analytes.Keywords: Agarose, Microarray analysis, PLL, Signal, to, noise ratio
-
ظهور ترکیبات دارویی نوین همگام با مطالعه سازوکار و جایگاه عمل آنها در راستای تیمار و پیشگیری از بیماری ها، نقش ارزنده ای در علم پزشکی طی سالیان متمادی برعهده داشته است. بااین حال روش های متداول جهت کشف و شناسایی ترکیبات دارویی جدید موفقیت چندانی در پی نداشته اند. لذا جایگزین نمودن فنآوری های نوین با روش های مرسوم که عموما پر هزینه و کم بازده بوده و منجر به واکنش های دارویی پر خطر در بیماران می شوند، امری ضروریست. طی سال های اخیر ظهور فنآوری های کارآمد و پربازده منجر به افزایش آگاهی در زمینه سازوکار عمل بیولوژیکی ترکیبات دارویی جدید و شناسایی کاربردهای درمانی نوین آنها در کوتاهترین زمان و با حداقل هزینه شده است. در این پژوهش، ضمن بررسی دقیق فنآوری های نوین و کارآمد همچون ریزآرایه های شیمیایی، ریزآرایه های بیان ژن و آزمون های شیمیایی- ژنتیکی مبتنی بر مخمر که منجر به بروز موفقیت های شگرف در راستای بررسی اثرات متقابل ترکیب دارویی- پروتئین، شناسایی جایگاه هدف و تجزیه عملکردی مبتنی بر سلول ترکیبات دارویی مورد نظر شده اند، مروری مختصر بر قابلیت کاربردی هر یک از این روش ها خواهیم داشت.
کلید واژگان: آزمون های غربالی کارآمد، تجزیه و تحلیل ریزآرایه، مصارف درمانیDevelopment of new therapeutic agents and exploring their mode of actions for the treatment and prevention of diseases has played a critical role in the practice of medicine for many years. Unfortunately، conventional approaches have yielded very few successes in the field of drug discovery. So، there is an urgent need to change the current drug discovery process that has high cost، low efficacy، and high adverse drug reactions. During the past few years، development of high-throughput technologies enables insight into the biological mechanism of action of drugs and the discovery of novel therapeutic applications. These methods are used in many drug discovery processes in order to reduce costs and shorten cycle times. In this review، we study current high-throughput technologies in drug discovery included chemical microarray، gene expression microarray and yeast chemical-genetic assays that have generated many successes in the evaluation of chemical–protein interactions، target identification and cell-based functional analysis and summarize the potential application of each approach.Keywords: High, Throughput Screening Assays, Microarray Analysis, Therapeutic Use -
سابقه و هدف
سرطان سینه شایعترین نوع سرطان و عمده ترین دلیل مرگ ناشی از سرطان در زنان سراسر دنیا است. تعیین عوامل موثر در این بیماری یکی از دغدغه های جامعه پزشکی امروز است. عوامل ژنتیکی یکی از موثرترین عوامل در بروز سرطان سینه هستند. برخی گزارشات پزشکی به طور انتزاعی به نقش برخی از ژن ها در این بیماری اشاره کرده اند. در این پژوهش با توجه به عدم وجود اطلاعات کافی و معتبر برای مدل سازی ریاضی درباره بیان ژن های شناخته شده در این نوع سرطان، اطلاعات مورد نیاز برای مدل سازی درباره تغییرات بیان ژنی از سایت NCBI جمع آوری گردید.
مواد و روش هااین پژوهش به روش توصیفی روی مجموعه داده های بیان ژنی حاصل از تجزیه و تحلیل ریزآرایه مربوط به 5 فرد سالم و 28 بیمار مبتلا به سرطان سلول های استرومای سینه موجود در سایت NCBI صورت گرفت. مدل سازی بر روی بیان 22277 ژن مرتبط با این نوع سرطان صورت گرفت. در این مدل، هر ژن به عنوان یک بازیکن در بازی TU در نظر گرفته شد و سهم مشارکت هر یک از ژن ها در این نوع سرطان محاسبه گردید. سرانجام 200 ژن که سهم بیشتری داشتند انتخاب و رتبه بندی شدند.
یافته هانتایج این پژوهش دال بر این هستند که بیش از 200 ژن سهم مشارکتی بالایی در بروز این نوع سرطان دارند، اما تغییر در بیان ژن های DDR1، SLC23A2 و PADI2 به ترتیب بالاترین سهم مشارکت در بروز سرطان در سلول های استرومای سینه را در مقایسه با دیگر ژن ها در این نوع سرطان دارا می باشند.
نتیجه گیریبه نظر می رسد که تغییر در بیان تعدادی از ژن ها در این نوع سرطان به وقوع می پیوندد. در تایید یافته ما، نقش تغییر در بیان ژن های DDR1 و PADI2 در بروز این نوع سرطان به طور تجربی در پژوهشهای قبلی نشان داده شده است. اما این پژوهش از نظر رتبه بندی بیان ژن هایی که در سرطان سینه دچار تغییر می شوند، منحصر به فرد است. این رتبه بندی بیان ژنی دارای ارزش پشتیبانی بالایی در تصمیم گیری برای تشخیص و درمان سرطان است. تصمیم گیری نهایی در ارتباط با صحت طبقه بندی ما منوط به نتایج پژوهشهای تحلیلی در ارتباط با تعیین سهم ژن های دخیل در بروز سرطان سینه است.
کلید واژگان: نئوپلاسم های پستان، بیان ژن، تجزیه و تحلیل ریزآرایه، نیم رخ بیان ژن، روش های پشتیبانی تصمیم گیریBackground And AimBreast cancer is one of the prevailing types of cancers and main cause of death in women suffering from cancer. Determination of factors involved in the development of this disease is one of the main challenges of modern medical society. Genetic factors are effective factors in generation of breast cancer and the role of some genes in this disease were denoted in some medical reports. Regarding restriction of valid information on changes in genes expression in this type of cancer for mathematical modeling، in this study، genes expression information that were needed for modeling was obtained from the NCBI website.
Materials And MethodsIn this descriptive study، the dataset of gene expression derived from microarray analysis of 5 healthy individual and 28 patients with breast stromal cell cancer was gathered from NCBI website. Then، expression of 22277 genes related to this type of cancer was modeled. In this model، each gene was considered as a player in transferable utility (TU) game and contribution rate of each gene in this type of cancer was calculated. Finally 200 genes with high contribution rate were chosen and ranked.
ResultsThe results of this research indicate that more than 200 genes have high contribution rate in incidence of this type of cancer. However، changes in DDR1، SLC23A2 and PADI2 genes expression have the highest contribution rate comapred with other genes in breast stromal cells cancer.
ConclusionIt seems that changes in expression of many genes are participating in this type of cancer. In support of our findings، the role of expression change in DDR1 and PADI2 genes in this type of cancer were shown experimentally in previous studies. But، this research is unique for assortment of genes with expression change in breast cancer. This ranking of gene expression has decision supporting value in the diagnosis and treatment of cancer. Final decision about accuracy of our classification is certainly subject to confirmation by future analytical experiments on expression of genes that participate in breast cancer.
Keywords: Breast Neoplasms, Gene Expression, Microarray Analysis, Transcriptome -
In the periodontium, the functions of the cell populations regarding the host-mediated tissue destruction in health and disease are not well understood. The purpose of this study was to measure the expression of genes differentially expressed in chronically inflamed periodontal ligament (PDL) cells compared to healthy PDL cells.
We compared the genome-wide gene expressions of chronically inflamed and healthy PDL cells by microarray analysis, and validated the data by real-time RT-PCR to identify the genes that might play distinct roles in chronic periodontal disease in vivo.
The expression rates of 14,239 genes were investigated and 3,165 of them were found differentially expressed by at least two-fold; the expression rates of 1,515 genes were significantly upregulated and the expression rates of 1,650 genes were significantly downregulated in inflamed PDL cells.
We focused on mainly structural components, for example, laminins and integrins, as well as degrading enzymes, for example, MMPs and cathepsins. The molecular composition of the laminin network varies in chronically inflamed compared to healthy PDL cells in vivo. Furthermore, integrin alpha6beta4, together with laminin-332, might be involved in chronic periodontal inflammation. Diverse keratins were upregulated, indicating that the epithelial cell rests of Malassez might also be involved in chronic periodontitis. The microarray analysis has identified a profile of genes potentially involved in chronic periodontal inflammation in vivo.Keywords: Extracellular matrix, inflammation, microarray analysis, periodontal ligament
- نتایج بر اساس تاریخ انتشار مرتب شدهاند.
- کلیدواژه مورد نظر شما تنها در فیلد کلیدواژگان مقالات جستجو شدهاست. به منظور حذف نتایج غیر مرتبط، جستجو تنها در مقالات مجلاتی انجام شده که با مجله ماخذ هم موضوع هستند.
- در صورتی که میخواهید جستجو را در همه موضوعات و با شرایط دیگر تکرار کنید به صفحه جستجوی پیشرفته مجلات مراجعه کنید.