signal processing
در نشریات گروه پزشکی-
BackgroundOver the past two decades, myoelectric signals have been extensively used in rehabilitation technology and hybrid human-machine interfaces. A key challenge in creating self-engineered, cost-effective devices lies in acquiring reliable and accurate myoelectric signals. Additionally, identifying optimal anatomical sites for signal detection remains complex and is addressed in this study.MethodThis applied research aims to tackle the outlined challenges through technological development and experimental testing. A Multi-Threading-based Queuing (MTQ) approach is proposed for real-time display and recording of muscle activity within a low-cost, multi-channel surface electromyography (sEMG) system. The technique was tested using raw (R) and feature (F) datasets via specialized classifiers to categorize sEMG signals from the silent utterance of English vowels captured from three facial muscles of a single healthy volunteer.ResultsThe proposed low-cost sEMG data acquisition technique, utilizing MTQ, achieved a mean classification accuracy of 0.91 for both R and F datasets, surpassing previous techniques for English vowel classification. Model 4, paired with low-cost hardware, attained a remarkable mean accuracy of 0.94, showing improvements between 14.6% and 74.07% over prior studies.ConclusionThe MTQ technique significantly enhances performance compared to existing configurations, suggesting that cost-effective sEMG data acquisition systems could replace commercial hardware in rehabilitation and human-machine interface applications.Keywords: Low-Cost Hardware, Rehabilitation Technology, Signal Processing, Silent Speech Recognition, Surface Electromyography (Semg)
-
BackgroundCardiovascular Diseases (CVD) requires precise and efficient diagnostic tools. The manual analysis of Electrocardiograms (ECGs) is labor-intensive, necessitating the development of automated methods to enhance diagnostic accuracy and efficiency.ObjectiveThis research aimed to develop an automated ECG classification using Continuous Wavelet Transform (CWT) and Deep Convolutional Neural Network (DCNN), and transform 1D ECG signals into 2D spectrograms using CWT and train a DCNN to accurately detect abnormalities associated with CVD. The DCNN is trained on datasets from PhysioNet and the MIT-BIH arrhythmia dataset. The integrated CWT and DCNN enable simultaneous classification of multiple ECG abnormalities alongside normal signals.Material and MethodsThis analytical observational research employed CWT to generate spectrograms from 1D ECG signals, as input to a DCNN trained on diverse datasets. The model is evaluated using performance metrics, such as precision, specificity, recall, overall accuracy, and F1-score.ResultsThe proposed algorithm demonstrates remarkable performance metrics with a precision of 100% for normal signals, an average specificity of 100%, an average recall of 97.65%, an average overall accuracy of 98.67%, and an average F1-score of 98.81%. This model achieves an approximate average overall accuracy of 98.67%, highlighting its effectiveness in detecting CVD.ConclusionThe integration of CWT and DCNN in ECG classification improves accuracy and classification capabilities, addressing the challenges with manual analysis. This algorithm can reduce misdiagnoses in primary care and enhance efficiency in larger medical institutions. By contributing to automated diagnostic tools for cardiovascular disorders, it can significantly improve healthcare practices in the field of CVD detection.Keywords: Cardiovascular Disorder, CWT, DCNN, Electrocardiography, Signal Processing, Computer-Assisted, Machine Learning
-
Pathologies cardiac discrimination using the Fast Fourir Transform (FFT) The short time Fourier transforms (STFT) and the Wigner distribution (WD)
This paper is concerned with a synthesis study of the fast Fourier transform (FFT), the short time Fourier transform (STFT and the Wigner distribution (WD) in analysing the phonocardiogram signal (PCG) or heart cardiac sounds. The FFT (Fast Fourier Transform) can provide a basic understanding of the frequency contents of the heart sounds. The STFT is obtained by calculating the Fourier transform of a sliding windowed version of the time signal s(t). The location of the sliding window adds a time dimension and one gets a time-varying frequency analysis. the Wigner distribution (WD) and the corresponding WVD (Wigner Ville Distribution) have shown good performances in the analysis of non-stationary and quantitative measurements of the time-frequency PCG signal characteristics and consequently aid to. signals. It is shown that these transforms provides enough features of the PCG signals that will help clinics to obtain diagnosis. Similarly, it is shown that the frequency content of such a signal can be determined by the FFT without difficulties qualitative
Keywords: Phonocardiogram, signal processing, sounds, Time-frequency analysis, signal analysis, FFT, STFT, WD -
Objective
This study aimed to investigate differences in brain networks between healthy children and children with attention deficit hyperactivity disorder (ADHD) during an attention test.
MethodTo fulfill this, we constructed weighted directed graphs based on Electroencephalography (EEG) signals of 61 children with ADHD and 60 healthy children with the same age. Nodes of graphs were 19 EEG electrodes, and the edges were phase transfer entropy (PTE) between each pair of electrodes. PTE is a measure for directed connectivity that determines theeffective relationship between signals in linear and nonlinear coupling. Connectivity graphs of each sample were constructed using PTE in the five frequency bands as follows: delta, theta, alpha, beta, and gamma. To investigate the differences in connectivity strength of each node after the sparsification process with two values (0.5 and 0.25), the permutation statistical test was used with the statistical significance level of p<0.01.
ResultsThe results indicate stronger inter-regional connectivity in the prefrontal brain regions of the control group compared to the ADHD group. However, the strength of inter-regional connectivity in the central regions of the ADHD group was higher. A comparison of the prefrontal regions between the two groups revealed that the areas of the Fp1 electrode (left prefrontal) in healthy individuals play stronger transmission roles.
ConclusionOur research can provide new insights into the strength and direction of connectivity in ADHD and healthy individuals during an attention task.
Keywords: Attention Deficit Hyperactivity Disorder (ADHD), Electroencephalography (EEG), Signal Processing -
The heart rate characteristic (HeRO score) is a figure derived from the analysis of premature neonate’s electrocardiogram signals, and can be used to detect infection before the onset of clinical symptoms. The United States and Europe accept this diagnostic technique, but we require more tests to prove its efficacy. This method is not accepted in other developed countries so far. The present study aimed to investigate changes in the heart characteristics of two neonates in Akbar Abadi Hospital in Tehran. Experts chose one newborn as a sepsis case, and the other neonate was healthy. The results were analyzed and compared with previous studies. In this research, a group of five neonates was selected randomly from the neonatal intensive care unit, and cardiac leads were attached to them for recording heart rates. We selected two neonates from the five cases, as a case (proven sepsis) and control, to analyze heart rate variability (HRV). Then, we compared the differences in the heart rate of both neonates. Analysis of HRV of these two neonates showed that the pattern of HRV is compatible with reports from US studies. Considering the results of this study, heart rates and their analysis can provide useful indicators for mathematical modeling before the onset of clinical symptoms in newborns.
Keywords: Heart rate, HeRO, neonates, sepsis, signal processing -
Background
Brain source imaging based on electroencephalogram (EEG) data aims to recover the neuron populations’ activity producing the scalp potentials. This procedure is known as the EEG inverse problem. Recently, beamformers have gained a lot of consideration in the EEG inverse problem.
ObjectiveBeamformers lack acceptable performance in the case of correlated brain sources. These sources happen when some regions of the brain have simultaneous or correlated activities such as auditory stimulation or moving left and right extremities of the body at the same time. In this paper, we have developed a multichannel beamformer robust to correlated sources.
Material and MethodsIn this simulation study, we have looked at the problem of brain source imaging and beamforming from a blind source separation point of view. We focused on the spatially constraint independent component analysis (scICA) algorithm, which generally benefits from the pre-known partial information of mixing matrix, and modified the steps of the algorithm in a way that makes it more robust to correlated sources. We called the modified scICA algorithm Multichannel ICA based EEG Beamformer (MIEB).
ResultsWe evaluated the proposed algorithm on simulated EEG data and compared its performance quantitatively with three algorithms: scICA, linearly-constrained minimum-variance (LCMV) and Dual-Core beamformers; it is considered that the latter is specially designed to reconstruct correlated sources.
ConclusionThe MIEB algorithm has much better performance in terms of normalized mean squared error in recovering the correlated/uncorrelated sources both in noise free and noisy synthetic EEG signals. Therefore, it could be used as a robust beamformer in recovering correlated brain sources.
Keywords: ICA Based Beamformer, Correlated Sources Recovery, Signal Processing, Computer-Assisted, Electroencephalography, Brain Waves -
Objectives
Apnea leads to respiratory arrest in premature infants, which decreases through the administration of caffeine by increasing the heart rate (HR). Nowadays, using electrocardiogram (ECG) signals, along with studying and comparing heart rate characteristics (HRC) in premature infants is considered as the most critical claim in the early detection of diseases, especially sepsis. Accordingly, this study investigated the effect of caffeine on HRC.
Materials and MethodsTo this end, the raw ECG data of infants were collected from the Akbarabadi neonatal intensive care unit section and then processed in time and statistical domain. Next, the effect of caffeine on their HRC was investigated, and finally, HRC signals were analyzed fifteen minutes before and immediately after caffeine administration.
ResultsBefore caffeine administration, the probability distribution of inter-beat (RR) intervals and the probability distribution of the R2 /R1 ratio were close to the normal distribution. According to previous studies, the irregularity of the signal in the diagram of the beat to beat RR interval indicates the infant health. However, these diagrams showed an abnormal distribution, and a specific uniformity was observed in the RR interval diagram after the administration of caffeine.
ConclusionsBased on the results of this study, changes in the infant’s HRC and its pattern should be identified after drug administration in order to evaluate the status of newborns, primarily through new methods of sepsis prediction in preterm infants. Eventually, the findings of this study enable clinicians to consider the drug effect as a confounding factor with a specific pattern in the signal without disconnecting diagnostic devices from infants for drug administration.
Keywords: Caffeine, Sepsis, Diagnoses, Signal processing -
مقدمه
احساس نقش مهمی در سلامت، ارتباط و تعامل بین انسان ها دارد. توانایی شناخت حالات حسی افراد قسمت مهمی از شاخص های سلامتی و ارتباط های طبیعی است. در پایگاه داده DEAP، سیگنال های الکتروانسفالوگرام و سیگنال های فیزیولوژیکی محیطی مربوط به 32 داوطلب ثبت شده است. شرکت کنندگان در هر ویدیو از نظر سطح انگیختگی، ظرفیت، دوست داشتن/نداشتن، تسلط و آشنایی با ویدیوی مشاهده شده امتیاز داده شدند.
روشدر این مقاله رو ش تجربی و کاربردی جهت طبقه بندی ظرفیت، انگیختگی، تسلط و علاقه، توسط رتبه بندی ویژگی های استخراج شده از سیگنال ها با استفاده از الگوریتم هایی بر روی سیگنال های EEG و سیگنال های فیزیولوژیکی محیطی (نظیر سیگنال های الکترومایوگرام، الکترواوکولوگرام، پاسخ الکتریکی پوست، نرخ تنفس، پلتیسموگرام و دمای پوست) انجام گردید. پس از فراخوانی سیگنال ها از پایگاه داده و پیش پردازش اولیه آنها، ویژگی های مختلف در حوزه زمان و فرکانس از کلیه سیگنال ها استخراج گردید. در این مقاله از طبقه بندی کننده های SVM و KNN، الگوریتم خوشه بندی K-means و شبکه های عصبی PNN و GRNN جهت تشخیص و طبقه بندی احساسات استفاده شد.
نتایجدر نهایت نشان داده شد که نتایج نهایی طبقه بندی احساسات توسط روش ها و طبقه بندی کننده های مختلف در این مقاله با دقت بالا صورت می پذیرد. بهترین نتایج صحت حاصل از به کارگیری روش پیشنهاد شده با استفاده از ویژگی های استخراج شده از سیگنال های محیطی و ویژگی های استخراج شده از سیگنال های EEG به ترتیب برابر 85/5% و 82/4% به ازای ورودی طبقه بندی کننده SVM حاصل گردید.
نتیجه گیریبا توجه به نتایج نهایی درخصوص طبقه بندی احساسات در این مقاله، الگوریتم ارایه شده نتایج نسبتا مناسب تری نسبت به سایر روش های مشابه پیشین ارایه داده است.
کلید واژگان: طبقه بندی احساسات، سیگنال های EEG، سیگنال های فیزیولوژیک، استخراج ویژگی، پردازش سیگنال هاDetection and Classification of Emotions Using Physiological Signals and Pattern Recognition MethodsIntroductionEmotions play an important role in health, communication, and interaction between humans. The ability to recognize the emotional status of people is an important indicator of health and natural relationships. In DEAP database, electroencephalogram (EEG) signals as well as environmental physiological signals related to 32 volunteers are registered. The participants in each video were rated in terms of level of arousal, capacity, liking/disliking, proficiency, and familiarity with the video they watched.
MethodIn this study, a practical empirical method was adopted to classify capacity, arousal, proficiency, and interest by ranking the features extracted from signals using algorithms on EEG signals and environmental physiological signals (such as electromyography (EMG), electrooculography (EOG), galvanic skin response (GSR), respiration rate, photoplethysmography (PPG), and skin temperature. After initializing the signals from the database and pre-processing them, various features in the time and frequency domain were extracted from all signals. In this study, SVM and KNN classifiers, K-means clustering algorithm, and neural networks, such as PNN and GRNN were used to identify and classify emotions.
ResultsIt was indicated in this study that the results of the classification of emotions using various methods and classifiers were well-established with high accuracy. The best accuracy results were obtained by applying the proposed method using SVM classifier based on features extracted from environmental signals (85.5%) and EEG signals (82.4%).
ConclusionAccording to the results of the classification of emotions in this study, the proposed algorithm provides relatively better results compared with previous similar methods.
Keywords: Classification of Emotions, EEG Signals, Physiological Signals, Feature Extraction, Signal Processing -
Background
The brain has four lobes consist of frontal, parietal, occipital, and temporal. Most researchers have reported that the left occipitotemporal region of the brain, which is the combined region of the occipital and temporal lobes, is less active in children with dyslexia like Sklar, Glaburda, Ashkenazi and Leisman.
MethodsThere are different methods and tools to investigate how the brain works, such as magnetic resonance imaging (MRI), positron emission tomography (PET), magneto-encephalography (MEG) and electroencephalography (EEG). Among these, EEG determines the electrical activity of the brain with the electrodes placed on the special areas on the scalp. In this research, we processed the EEG signals of dyslexic children and healthy ones to determine what the areas of the brain are most likely to cause the disease.
ResultsFor this purpose, we extracted 43 features, including relative spectral power (RSP) features, mean, standard deviation, skewness, kurtosis, Hjorth, and AR parameters. Then an SVM classifier is used to separate two classes. Finally, we show the particular brain activation pattern by calculating the correlation coefficients and co-occurrence matrices, which suggests the activation of the working memory region as an active area.
ConclusionBy identifying the brain areas involved in reading activity, it has expected that psychologists and physicians will be able to design the therapeutic exercises to activate this part of the brain.
Keywords: EEG, Classification, Dyslexia, Ooccipitotemporal lobe, Signal processing -
Background
Electromyographic (EMG) signals obtained from a contracted muscle contain valuable information on its activity and health status. Much of this information lies in motor unit potentials (MUPs) of its motor units (MUs), collected during the muscle contraction. Hence, accurate estimation of a MUP template for each MU is crucial.
ObjectiveTo investigate the possibility of improving MUP template estimation using the wavelet denoising technique.
Material and MethodsIn this analytical study, several MUP template estimators were developed by combining conventional estimation methods and wavelet denoising techniques. A MUP template was initially estimated using conventional methods such as mean, median, median-trimmed mean, or mode. Thereafter, it was post-processed using the wavelet denoising technique.
ResultsEvaluation results of the studied estimators using 40 simulated EMG signals with a true template for each constituent MUP train showed that augmented wavelet- based template estimation methods are more reliable than conventional methods. However, on average, wavelet denoising was not much effective. Around 40 MUPs of a MU is sufficient to estimate its MUP template.
ConclusionAlthough wavelet techniques are effective in EMG signal analysis, here wavelet denoising did not practically improve MUP template estimation. Considering computational simplicity and estimation error, the two methods median and median-trimmed mean are practical estimators that can provide a good estimation of a MUP template for a MU when approximately 40 MUPs are available. Nevertheless, the baseline noise level in the MUP templates estimated using the median-trimmed mean method is slightly lower than that in the templates estimated using the median method.
Keywords: Electromyography, EMG, MUP Template Estimation, Signal Processing, Wavelet Analysis -
Background
Use of hair samples to analyze the trace element concentrations is one of the interesting fields among many researchers. X-ray fluorescence (XRF) is considered as one of the most common methods in studying the concentration of elements in tissues and also crystalline materials, using low energy X-ray. In the present study, we aimed to evaluate the concentration of the trace elements in the scalp hair sample through XRF spectroscopy using signal processing techniques as a screening tool for prostate cancer.
MethodsHair samples of 22 men (including 11 healthy and 11 patients) were analyzed. All the sample donors were Iranian men. EDXRF method was used for the measurements. Signals were analyzed, and signal features such as mean, root-mean-square (RMS), variance, and standard deviation, skewness, and energy were investigated. The Man-Whitney U test was used to compare the trace element concentrations. The analysis of variance (ANOVA) test was used to identify which extracted feature could help to identify healthy and patient people. P values ≤ 0.05 were considered statistically significant. Statistical analysis was performed using SPSS 16.0 software.
ResultsThe mean±SD age was 67.8±8.7 years in the patient group and 61.4±6.9 years in the healthy group. There were statistically significant differences in the aluminum (Al, P<0.001), silicon (Si, P=0.006), and phosphorus (P, P=0.028) levels between healthy and patient groups. Skewness and variance were found to be relevant in identifying people with cancer, as signal features.
ConclusionThe use of EDXRF is a feasible method to study the concentration of elements in the hair sample, and this technique may be effective in prostate cancer screening. Further study with a large sample size will be required to elucidate the efficacy of the present method in prostate cancer screening.
Keywords: Prostate cancer, Hair sample, XRF, Prostate screening, Signal processing -
Background
This study offers a robust framework for the classification of autonomic signals into five affective states during the picture viewing. To this end, the following emotion categories studied: five classes of the arousal-valence plane (5C), three classes of arousal (3A), and three categories of valence (3V). For the first time, the linguality information also incorporated into the recognition procedure. Precisely, the main objective of this paper was to present a fundamental approach for evaluating and classifying the emotions of monolingual and bilingual college students.
MethodsUtilizing the nonlinear dynamics, the recurrence quantification measures of the wavelet coefficients extracted. To optimize the feature space, different feature selection approaches, including generalized discriminant analysis (GDA), principal component analysis (PCA), kernel PCA, and linear discriminant analysis (LDA), were examined. Finally, considering linguality information, the classification was performed using a probabilistic neural network (PNN).
ResultsUsing LDA and the PNN, the highest recognition rates of 95.51%, 95.7%, and 95.98% were attained for the 5C, 3A, and 3V, respectively. Considering the linguality information, a further improvement of the classification rates accomplished.
ConclusionThe proposed methodology can provide a valuable tool for discriminating affective states in practical applications within the area of human-computer interfaces.
Keywords: Autonomic Nervous System, Emotions, Signal Processing, Bilingualism, Nonlinear Dynamics -
مجله دانشکده پزشکی دانشگاه علوم پزشکی تهران، سال هفتاد و ششم شماره 5 (پیاپی 209، امرداد 1397)، صص 326 -330زمینه و هدفتشخیص دقیق خواب عمیق (خواب با امواج آهسته) از بیداری، باعث افزایش صحت طبقه بندی خواب به عنوان امری مهم در پزشکی خواهد شد. به دلیل هزینه بر و وقت گیر بودن تعیین دستی عمق خواب می توان با پردازش سیگنال مغزی به صورت اتوماتیک عمق خواب را تعیین کرد. در این مطالعه ویژگی جدیدی از طیف مرتبه دوم سیگنال الکتروانسفالوگرام جهت تشخیص خواب عمیق بررسی شد.روش بررسیاین مطالعه مقطعی در دانشکده فناوری های نوین علوم پزشکی دانشگاه علوم پزشکی اصفهان از بهمن 1395 تا مهر 1396 انجام شد. مطالعه بر روی 2598 تکه سیگنال الکتروانسفالوگرام دریافت شده از هشت نفر می باشد. در این مطالعه از مقادیر طیف مرتبه دوم الکتروانسفالوگرام تصویر خاکستری ساخته شد و با آستانه گذاری اتسو به تصویر باینری تبدیل گشت. سپس ویژگی جدید نسبت تعداد بیت های سفید بالای قطر فرعی به پایین آن (نرخ دوطیفی فرکانس های پایین به بالا) از تصویر استخراج شد.یافته هاویژگی های مبتنی بر انرژی از جمله مهمترین روش های پردازش سیگنال های حیاتی هستند. نرخ دوطیفی فرکانس های پایین به بالا، قادر است با درستی 99/50% حالت بیداری را از خواب عمیق جدا کند درحالی که براساس نتایج به دست آمده ویژگی های مبتنی بر انرژی چنین توانایی ندارند.نتیجه گیریویژگی معرفی شده کارایی لازم را برای استفاده در تعیین اتوماتیک عمق خواب دارا است. درستی به دست آمده در تفکیک خواب عمیق و بیداری با ویژگی معرفی شده بیش از درستی به دست آمده به وسیله همه ویژگی های مبتنی بر انرژی سیگنال است. می توان از این ویژگی در همه کارهایی که در آن ها از طیف مرتبه دوم استفاده می شود (مانند تعیین عمق بیهوشی)، استفاده کرد.کلید واژگان: مطالعات مقطعی، انرژی، پردازش سیگنال، عمق خوابBackgroundAccurate detection of deep sleep (Due to the low frequency of the brain signal in this part of sleep, it is also called slow-wave sleep) from awakening increases the sleep staging accuracy as an important factor in medicine. Depending on the time and cost of manually determining the depth of sleep, we can automatically determine the depth of sleep by electroencephalogram (EEG) signal processing. In this paper a new EEG bispectrum based feature is introduced for deep sleep discrimination.MethodsThis cross-sectional study was conducted at Isfahan University of Medical Sciences, Faculty of Advanced Technologies in Medicine, from February to October 2017. In this study a gray scale image was made of electroencephalogram bispectrum amounts and converted to binary image with Otsus Thresholding. Then the ratio of white bits in the above of the secondary diagonal to white bits in the down of secondary diagonal (low to high frequencies bispectrum rate) is extracted as a new feature. This feature is an effective method for detecting deep sleep from awakening.ResultsOne of the important methods in biomedical signal processing is the use of the power spectrum or signal energy. In sleep studies, energy-related features have also been used to determine the depth of sleep. Low to high frequencies bispectrum rate is able to separate deep sleep from awakening by accuracy of 99.50 percent, while energy-based features as one of the most important approaches to sleep classification do not have this ability.ConclusionIn this study we show that Low to high frequencies bispectrum rate" feature has this capability to use in sleep staging. It is not used in previous works. The accuracy obtained in deep sleep separation from the awakening with the introduced feature (99.50 percent) is greater than the accuracy obtained by all the energy-based features (The simultaneous use of the 6 bands energy leads to 99.42 percent accuracy). This feature indicates the ratio of the phase coupling at low frequencies to high frequencies and can be used in all cases where the bispectrum is used (such as determining the depth of anesthesia).Keywords: cross-sectional studies, energy, signal processing, sleep stages
-
مقدمهدر سیستم های کاشت حلزون، واژه کانال به تعداد محل های تحریکی در گوش داخلی و یا حلزون دلالت داشته و به این شکل دامنه فرکانسی و یا زیر و بمی تعیین می گردد. سیستم های کاشت حلزون چند کاناله برخلاف کاشت حلزون تک کاناله، سیگنال ورودی را به باندهای فرکانسی متفاوتی تقسیم کرده و به مکان های مختلف تحریکی معین در گوش داخلی انتقال می دهد. داشتن محل های تحریکی بیشتر، 2 هدف اصلی را به دنبال دارد: 1- از آن جایی که فیبرهای عصب شنوایی در حلزون به صورت تونوتوپیک سازمان دهی شده است، تعداد الکترود بیشتر تفکیک فرکانسی بهتری را ارایه می کند. 2- اگر در حلزون مناطقی وجود داشته باشد که به تحریک الکتریکی به طور نامناسب و یا به هیچ وقت پاسخ ندهد، در برنامه ریزی دستگاه از تحریک آن مکان ها اجتناب می شود و اجزای فرکانسی ورودی پردازش شده، با تحریک همراه می شود. هدف از انجام مطالعه حاضر، مقایسه کاشت حلزون تک کاناله با چند کاناله از نظر استراتژی کدگذاری فرکانسی و اثر آن بر درک گفتار افراد دریافت کننده سیستم های کاشت حلزون بود.مواد و روش هامطالعه حاضر به وسیله بررسی پایگاه های علمی (Pubmed، Science direct، Google scholar) در بازه زمانی 2016-1965 با استفاده از واژگان مرتبط با موضوع انجام شد و مقالات با توجه به معیارهای ورود و خروج انتخاب گردید.یافته هاکاشت حلزون های تک کاناله فرکانس را بر اساس سرعت شلیک ایمپالس های الکتریکی کدبندی می کند. کاشت حلزون های چند کاناله از نظریه استراتژی مکانی برای کدبندی فرکانسی استفاده می کند که در آن فرکانس های مختلف سیگنال شنوایی جداسازی شده و به شکل تونوتوپیک در طول در ازای حلزون، از طریق آرایه الکترودی ارایه می شود. کدگذاری مکانی و زمانی فرکانس های صدا می تواند تا حدودی به وسیله تحریک چند کاناله عصب شنوایی، حفظ و تکرار شود. در کاشت حلزون چند کاناله استراتژی کدگذاری دارای 2 مدل استخراج ویژگی و شکل موج می باشد. همچنین، درک گفتار حاصل از سیستم های تک کاناله و چند کاناله بررسی شد.نتیجه گیریبا توجه به یافته ها، می توان نتیجه گرفت که سیستم های کاشت حلزون تک کاناله با کدگذاری زمانی فرکانسی، نمی تواند به میزان کافی اطلاعات گفتاری را منتقل کند؛ در حالی که کاشت حلزون های چند کاناله به اندازه کافی شباهت به نقشه تونوتوپیک حلزون داشته و فهم گفتار در آن نسبت به وسایل تک کاناله بیشتر است.کلید واژگان: کاشت حلزون چند کاناله، کاشت حلزون تک کاناله، پردازش سیگنال، درک گفتارIntroductionThe term channel in cochlear implant systems refers to the number of stimulation sites within the inner ear or cochlea that determines the range of frequencies or pitches. Unlike single-channel cochlear implant, a multi-channel cochlear implant system divides the incoming signal into various frequency bands, and then, transmits it to various stimulation areas within the inner ear. Having more stimulation sites entails two main goals: 1- As the auditory nerve fibers in the cochlea are tonotopically organized, higher number of electrodes leads to better frequency separation; 2- The areas in the cochlea with inappropriate or no response to electrical stimulation will be avoided in the programming of the device, and the components of the processed input frequency will accompany the stimulation. The goal of the present study was to compare the frequency encoding strategy and its effect on speech understanding of the recipients of single-channel and multi-channel cochlear implant systems.Materials And MethodsPublished researches were identified by reviewing scientific databases (PubMed, Science Direct, and Google Scholar) from 1965 to 2016 using relevant keywords. The researches were selected based on the inclusion and exclusion criteria.ResultsSingle-channel cochlear implants encode the frequency based on the rate of firing of electrical impulses. Multi-channel cochlear implants ýuse the spatial strategy theory for frequency encoding, wherein the different frequencies of the auditory signal are separated and presented in a tonotopic manner along the length of the cochlea via the electrode array. The spatial and temporal encoding of the sound frequencies can be partly replicated by multi-channel stimulation of the auditory nerve. Encoding strategy in multi-channel cochlear implant consists of feature extraction and wave form. The resulting speech understanding of the single-channel and multi-channel systems was also assessed.ConclusionBased on the findings, it can be concluded that single-channel cochlear implant systems with temporal encoding of frequency do not adequately convey speech information, whereas multi-channel cochlear implants ýhave more similarities to the tonotopic map of the cochlea and provide a better speech understanding in comparison to single channel devices.Keywords: Multi-channel cochlear implant, Single-channel cochlear implant, Signal processing, Speech perception
-
IntroductionPurkinje Cell (PC) output displays a complex firing pattern consisting of high frequency sodium spikes and low frequency calcium spikes, and disruption in this firing behavior may contribute to cerebellar ataxia. Riluzole, neuroprotective agent, has been demonstrated to have neuroprotective effects in cerebellar ataxia. Here, the spectral analysis of PCs firing in control, 3-acetylpyridine (3-AP), neurotoxin agent, treated alone and riluzole plus 3-AP treated were investigated to determine changes in the firing properties. Difference in the power spectra of tonic and burst firing was assessed. Furthermore, the role of calcium-activated potassium channels in the power spectra was evaluated.MethodsAnalysis was performed using Matlab. Power spectral density (PSD) of PCs output were obtained. Peak frequencies were extracted from the spectrum and statistical comparisons were done. In addition, a multi-compartment computational model of a Purkinje cell was used. This computational stimulation allowed us to study the changes in the power spectral density of the PC output as a result of alteration in ion channels.ResultsSpectral analysis showed that in the spectrum of tonic and burst firing pattern only high sodium frequency and low calcium frequency was seen, respectively. In addition, there was a significant difference between the frequency components of PCs firing obtained from normal, ataxia and riluzole treated rats. Results indicated that sodium firing frequency of normal, ataxic and treated PCs occurred in approximate frequency of 22.53±5.49, 6.46±0.23, and 31.34±4.07 Hz, respectively; and calcium frequency occurred in frequency of 4.22±2.02, 1.52±1.19, and 3.88±1.37 Hz, respectively. The simulation results demonstrated that blockade of calciumactivated potassium channels in the PC model changed the PSD of the PC model firing activity. This change was similar to PSD changes in ataxia condition.ConclusionThese alterations in the spectrum of PC output may be a basis for developing possible new treatment strategies to improve cerebellar ataxia.Keywords: Cerebellar ataxias, Purkinje cells, Calcium spike, Sodium spike, Signal processing
-
زمینه و هدفتفاوت های فردی، به ویژه جنسیت، نقش مهمی در چگونگی پاسخ افراد به احساسات دارد. در تحقیقات علوم شناختی، تحلیل سیگنال های بیولوژیکی به عنوان یکی از راه های مطمئن در بررسی این پاسخ ها معرفی شده است. در این مقاله، با اتخاذ رویکردی جامع بر روش های پردازش سیگنال های حیاتی، مطالعه دقیقی بر مساله تفاوت های میان زنان و مردان به تحریکات احساسی مختلف از جمله ترس، غم، شادی و آرامش شده است.مواد و روش هابر این اساس، روش های پردازش سیگنال به سه دسته کلی تحلیل های خطی، ویولت و غیرخطی تقسیم می شود. در روش پیشنهادی، ویژگی های مختلف از هر سه دسته و از سه سیگنال خودمختار (شامل سیگنال های قلبی، پالس انگشت و هدایت الکتریکی پوست) استخراج گردید. برای ایجاد احساسات در افراد، قطعات موسیقی معتبر از چهار کلاس احساسی پخش شد.یافته هانتایج بیان گر وجود الگوهای متفاوت در پاسخ به تحریکات احساسی مختلف در میان زنان و مردان بوده است. این تفاوت ها در ویژگی های سیگنال پالس نسبت به دو سیگنال دیگر مشهودتر بود. از میان کلاس های احساسی، ترس بیش ترین نرخ تمایز در پاسخ های احساسی خانم ها و آقایان را ایجاد کرده است.نتیجه گیریاین مطالعه سعی کرده است تا با بررسی جامع سیگنال های خودمختار و روش های مختلف پردازش، بتوانند بینش جدید و درک بهتری از تفاوت های جنسیتی افراد در پاسخ های احساسی را ارائه نماید. به علاوه، به محققان کمک می کند در مواجهه با حجم وسیعی از اطلاعات به دست آمده از تحلیل سیگنال، تصمیمی مناسب در جهت شناسایی روش پردازشی کارآمد اخذ نمایند.کلید واژگان: آزمون های آماری، احساسات، پردازش سیگنال، جنسیتBackgroundIndividual differences, especially gender, have an important role on individuals responds to the emotions. In cognitive science investigations, the analysis of biological signals has been introduced as a confident way to evaluate such responses. In this paper, by adopting a comprehensive approach on biomedical signal processing techniques, a precise examination on women and men differences in affective responses has been provided into different emotional stimuli, including fear, sadness, happiness, and peacefulness.Materials And MethodsAccordingly, signal processing methods were divided into three general categories, linear, wavelet, and non-linear based techniques. In the proposed method, different features from each of three categories and from three autonomic signals, including electrocardiogram (ECG), finger pulse, and galvanic skin response (GSR), were extracted. To induce emotions in participants, validated emotional pieces of music were broadcast in four affective classes.ResultsThe results indicate the different patterns of responses into affective incentives in women and men. The differences were more noticeable in the features of pulse signal than those of the other signals. Among emotional classes, fear resulted in the highest rate of distinction between men and women emotional responses.ConclusionBy the comprehensive evaluation of autonomic signals and different signal processing techniques, this study has tried to offer a new insight for better understanding of gender differences in emotional responses. In addition, it will help the researchers to adopt appropriate decisions in identifying efficient processing approach to deal with large amount of information achieved from signal analysis.Keywords: Emotions, Gender, Signal Processing, Statistics
-
IntroductionAutomatic human emotion recognition is one of the most interesting topics in the field of affective computing. However, development of a reliable approach with a reasonable recognition rate is a challenging task. The main objective of the present study was to propose a robust method for discrimination of emotional responses thorough examination of heart rate variability (HRV). In the present study, considering the non-stationary and non-linear characteristics of HRV, empirical mode decomposition technique was utilized as a feature extraction approach.Materials And MethodsIn order to induce the emotional states, images indicating four emotional states, i.e., happiness, peacefulness, sadness, and fearfulness were presented. Simultaneously, HRV was recorded in 47 college students. The signals were decomposed into some intrinsic mode functions (IMFs). For each IMF and different IMF combinations, 17 standard and non-linear parameters were extracted. Wilcoxon test was conducted to assess the difference between IMF parameters in different emotional states. Afterwards, a probabilistic neural network was used to classify the features into emotional classes.ResultsBased on the findings, maximum classification rates were achieved when all IMFs were fed into the classifier. Under such circumstances, the proposed algorithm could discriminate the affective states with sensitivity, specificity, and correct classification rate of 99.01%, 100%, and 99.09%, respectively. In contrast, the lowest discrimination rates were attained by IMF1 frequency and its combinations.ConclusionThe high performance of the present approach indicated that the proposed method is applicable for automatic emotion recognition.Keywords: Classification, Emotion, Heart rate, Signal processing
-
زمینه و هدفALS یک بیماری عصبی ماهیچه ای پیش رونده است که از مهم ترین مشخصات آن تخریب نورون های حرکتی در سیستم عصبی مرکزی و محیطی است. در حال حاضر هیچ روش کلینیکی دقیقی برای تشخیص این بیماری ارائه نشده است. در اغلب موارد افراد دارای ALS به دلیل اختلالات موجود در سیستم عصبی نمی توانند به صورت عادی راه بروند. به همین دلیل، یکی از روش های مفید برای تشخیص این بیماری از سایر بیماری های عصبی و یا تشخیص بیماران مبتلا به ALS از افراد سالم، تحلیل سیگنال حرکتی راه رفتن است.مواد و روش هادر این مطالعه از دادگان موجود در سایت فیزیونت استفاده شده است. این پایگاه داده ای از 13 بیمار دارای ALS(ALS1،ALS2،...،ALS13) به همراه 16 فرد سالم (CO1،CO2،...،CO16) تشکیل شده است. افراد بیمار شرکت کننده در این مطالعه هیچ گونه سابقه بیماری عصبی دیگری نداشتند و در هنگام راه رفتن از هیچ وسیله کمکی مانند ویلچر استفاده نمی کردند.یافته هادر این مطالعه از طیف توان که از ویژگی های فرکانسی است، برای آشکارسازی تفاوت های احتمالی سری های زمانی افراد بیمار و سالم استفاده شد. توان طیف هر دو گروه در فرکانس های بالا مشابه است، ولی در فرکانس های پایین، توان طیف در افراد سالم معمولا کمتر از افراد بیمار است.نتیجه گیریشبکه عصبی مصنوعی با بیان گر قدرت تفکیک 83 درصد برای مجموعه داده های آزمایش در بین افراد سالم و بیمار به کار رفت. به نظر می رسد این الگوریتم روش مناسبی برای جداسازی افراد بیمار و سالم در مراحل اولیه بیماری باشد.کلید واژگان: سیگنال حرکتی راه رفتن، پردازش سیگنال، بیماری ALS، شبکه عصبیBackgroundALS is a progressive neuro-muscular disease, which is characterized by motor neuron loss in the Central Nervous System (CNS) and Peripheral Nervous System (PNS). Up to now, no accurate clinical method for diagnosis of the disease have been provided. In most cases, ALS patients are unable to walk normally due to abnormalities in the nervous system. For this reason, one of the most appropriate methods in the diagnosis of ALS from other neurological diseases or from healthy volunteers is the gait motor signal analysis.Materials And MethodsIn this study, gait signals available in Physionet database have been used. The database consists of 13 patients with ALS (ALS1, ALS2, , ALS13) and 16 normal subjects (CO1, CO2, , CO16). The patients participating in this study had no history of any psychiatric disorders and did not use any assistive device for walking, like wheelchair. The power spectrum of stride, swing, and stance of normal subjects and patients was computed for both left and right legs. To provide appropriate inputs for the classifier, the frequency band of the power spectrum of all signals was divided into eight equal parts. The area of all regions was computed. Three frequency band of the lower range of power spectra selected as inputs of the classifier.ResultsIn this study, power spectra, as frequency attributes, were used to explore probable differences of time series in both patients and healthy subjects.ConclusionArtificial Neural Network was used to classify normal and ALS groups with the accuracy of 83% for the test data set. It seems that the present algorithm can be used in discriminating patients from normal subjects in the early stages of the disease.Keywords: Gait motor signal, Signal processing, ALS disease, Neural network
-
ObjectiveIt has been recognized that sleep has an important effect on emotion processing. The aim ýof this study was to investigate the effect of previous night sleep duration on autonomic ýresponses to musical stimuli in different emotional contexts.ýMethodA frequency based measure of GSR, PR and ECG signals were examined in 35 healthy ýstudents in three groups of oversleeping, lack of sleep and normal sleep. ýResultsThe results of this study revealed that regardless of the emotional context of the musical ýstimuli (happy, relax, fear, and sadness), there was an increase in the maximum power of ýGSR, ECG and PR during the music time compared to the rest time in all the three ýgroups. In addition, the higher value of these measures was achieved while the ýparticipants listened to relaxing music. Statistical analysis of the extracted features ýbetween each pair of emotional states revealed that the most significant differences ýwere attained for ECG signals. These differences were more obvious in the participants ýwith normal sleeping (pConclusionThere was a strong relation between emotion and sleep duration, and this association can ýbe observed by means of the ECG signals.ýKeywords: Emotioný, Physiological Signals, Power ýSpectral Density, Signal processing, ýSleep
-
BackgroundThis paper proposes a new emotional stress assessment system using multi-modal bio-signals. Electroencephalogram (EEG) is the reflection of brain activity and is widely used in clinical diagnosis and biomedical research.MethodsWe design an efficient acquisition protocol to acquire the EEG signals in five channels (FP1, FP2, T3, T4 and Pz) and peripheral signals such as blood volume pulse, skin conductance (SC) and respiration, under images induction (calm-neutral and negatively excited) for the participants. The visual stimuli images are selected from the subset International Affective Picture System database. The qualitative and quantitative evaluation of peripheral signals are used to select suitable segments of EEG signals for improving the accuracy of signal labeling according to emotional stress states. After pre-processing, wavelet coefficients, fractal dimension, and Lempel-Ziv complexity are used to extract the features of the EEG signals. The vast number of features leads to the problem of dimensionality, which is solved using the genetic algorithm as a feature selection method.ResultsThe results show that the average classification accuracy is 89.6% for two categories of emotional stress states using the support vector machine (SVM).ConclusionThis is a great improvement in results compared to other similar researches. We achieve a noticeable improvement of 11.3% in accuracy using SVM classifier, in compared to previous studies. Therefore, a new fusion between EEG and peripheral signals are more robust in comparison to the separate signals.Keywords: Electroencephalogram, Emotional Stress, Signal Processing, Recognition, Support Vector Machine
- نتایج بر اساس تاریخ انتشار مرتب شدهاند.
- کلیدواژه مورد نظر شما تنها در فیلد کلیدواژگان مقالات جستجو شدهاست. به منظور حذف نتایج غیر مرتبط، جستجو تنها در مقالات مجلاتی انجام شده که با مجله ماخذ هم موضوع هستند.
- در صورتی که میخواهید جستجو را در همه موضوعات و با شرایط دیگر تکرار کنید به صفحه جستجوی پیشرفته مجلات مراجعه کنید.