به جمع مشترکان مگیران بپیوندید!

تنها با پرداخت 70 هزارتومان حق اشتراک سالانه به متن مقالات دسترسی داشته باشید و 100 مقاله را بدون هزینه دیگری دریافت کنید.

برای پرداخت حق اشتراک اگر عضو هستید وارد شوید در غیر این صورت حساب کاربری جدید ایجاد کنید

عضویت
جستجوی مقالات مرتبط با کلیدواژه

bayesian analysis

در نشریات گروه پزشکی
  • Erfan Ayubi, Sharareh Niksiar, Zahra Keshtpour Amlashi, Elaheh Talebi-Ghane*
    Background

     Exploring the pattern of diseases in space and time enhances our understanding of truly needy areas. The present study aimed to explore spatiotemporal mapping of colorectal cancer (CRC) and gastric cancer (GC) incidence using Bayesian models and space-time scan statistics in Hamadan Province from 2010 to 2019.

    Study Design: 

    An ecological time-series study.

    Methods

     In this study, the data on CRC and GC cases were obtained from Hamadan cancer registry. The crude standardized incidence ratio (SIR) was calculated for each county per year. Hierarchical Bayesian space-time models were fitted to estimate adjusted SIRs. Space time cluster analysis was performed using space-time scan statistic.

    Results

     A total of 1864 CRC cases and 2340 GC cases were included in the analyses. The central counties, including Hamadan (smoothed SIR range: 1.24-1.28) and Tuyserkan (1.01-1.24), exhibited higher than expected number of CRC cases. Northern counties such as Razan (1.19-1.51) and Kabudarahang (1.21-1.42), along with Nahavand in the south (0.98, 1.53), also showed higher than expected number of GC cases. The most likely spatiotemporal cluster of CRC was identified in Hamadan and Tuyserkan occurring between 2015 and 2019 (relative risk [RR]=1.82, P<0.001). The most likely spatiotemporal cluster of GC was identified in Nahavand from 2010 to 2011 (RR=1.87, P<0.001).

    Conclusion

     Spatiotemporal inequality in the incidence of CRC and GC was identified in Hamadan province over the past decade. The findings may help to reduce cancer disparities and allocate effective resources in the appropriate region and time in the future.

    Keywords: Bayesian Analysis, Colorectal Cancer, Gastric Cancer, Iran, Mapping, Spatiotemporal
  • DRINOLD MBETE, JOB SIRENGO*
    Background

    Prostate cancer is an emerging health problem in Sub-Saharan Africa and it is often diagnosed at an advanced stage due to the lack of access to screening and diagnostic facilities.

    Method

    This study therefore aimed at modelling the effects of risk factors on the outcome of prostate cancer screening using Generalized Bayesian ordinal logistic regression with random effects then compare the results obtained with the model without random effects. The study further used Mean Squared Errors and established that the estimates for the two models were different

    Results

    The findings in this study indicate that aged individuals have high chances of having prostate cancer at the early, late or advanced stage. The individual with traces of family history and hereditary breast & ovarian cancer syndrome are also most likely to be in late or advanced stage of prostate cancer.

    Conclusion

    From the findings aged individuals, having traces of family history and individuals with hereditary breast & ovarian cancer history, should be on alert and understand all symptoms of prostate cancer. For any signs or appearance of prostate cancer symptoms, they are supposed seek for screening services at earliest time possible. In addition, the Ministry of Health should create awareness training and increase screening facilities, this will also encourage for early screening and detection of prostate cancer. The different estimates led to identifying the best model, whereby models with presence of random effects had lowest Widely Applicable Information Criterion values hence they were considered to be the best models in each category.

    Keywords: Risk Factors, Random Effects, Ordinal Logistic, Bayesian Analysis
  • Elangovan Arumugum *, Vasna Joshua
    Introduction

    The HIV Sentinel Surveillance (HSS) conducted by National AIDS Control Organization (NACO) is the predominant data source for HIV estimations in India. While the HSS targets the key populations at risk of HIV infection, the National Family Health Survey (NFHS) measures the communitybased HIV prevalence. Improvised HIV estimates in India were attributed to the HIV prevalence data obtained from the NACO-HSS and NFHS.

    Methods

    Bayesian analysis was performed to determine the state-level prevalence of HIV among females in seven South Indian States. The analysis involved plotting the prior, likelihood, and posterior distributions, facilitating a visual assessment of the data. The HIV prevalence among females calculated from the NFHS (2015-16) survey data was used for prior distributions. HIV prevalence among pregnant women obtained from the HIV Sentinel Surveillance 2019 was used for likelihood. Bayesian analysis was performed using the R programming (RStudio 2022.02.0). A posterior probability distribution was obtained using the prior distribution and the likelihood by applying the Bayes theorem. Graphical representation was achieved through R's plotting functions. Kerala and Pondicherry were not included in the analysis due to zero or very low prevalence reported in both NFHS and HSS.

    Results

    The Bayesian estimates of HIV prevalence among females were 0.38 % [95% CI:0.29 - 0.47] in Andhra Pradesh, 0.28 [95% CI:0.23 - 0.35] in Karnataka, 0.27 [95% CI:0.20 - 0.34] Odisha, 0.27 % [95% CI:0.19 - 0.36] in Telangana and 0.19 [95% CI:0.15 - 0.24] in Tamil Nadu.

    Conclusion

    Bayesian techniques present a versatile and robust strategy for modelling and analysing HIVrelated data, offering a flexible and powerful approach to data analysis.

    Keywords: HIV, Prevalence, Sentinel surveillance, Bayesian analysis, India, Data modeling
  • Habiballah Esmaeeli, Ali Talaei, Zahra Arabborzu, Soleiman Kheyri, Monire Raeesi, Mahdieh Borhani, Anahita Saeedi
    Objective

    Bipolar I disorder is one of the most frequent mental disorders characterized by manic or mixed +/- depressive episodes. Drug treatment has been proved to diminish next episodes, but many other factors are important for exacerbating the conditions. This study aimed to investigate the effective factors on the time and number of episodes in these patients by applying the shared frailty model.

    Method

    In this retrospective longitudinal study, the information of 606 patients with bipolar I disorder, admitted for the first time in Ibn-e-Sina psychiatric hospital in Mashhad from the beginning of 2007 until the end of 2009 were used. These patients were followed up until the end of 2018 for readmission. The Cox model with gamma frailty and Bayesian approach were used to determine the effective factors of frequent recurrences.

    Results

    History of head trauma, substance abuse, and legal conflict had a positive impact on recurrences, while age had a negative effect on recurrences and the risk of recurrence was higher in younger people (P < 0.05). The variance estimation of frailty effect was 0.97 that indicates a correlation between the recurrence intervals of bipolar I patients, owing to a heterogeneity among patients.

    Conclusion

    Based on the results, a higher risk of recurrence of bipolar I disorder was found in younger patients and those with a history of head trauma, substance abuse, and legal conflicts. Further investigations are required to account for the genetic factor and psychosocial exposure during critical periods applying this model.

    Keywords: Bayesian Analysis, Bipolar Disorder, Recurrence
  • Soodabeh Navadeh, Ali Mirzazadeh, Willi McFarland, Phillip Coffin, Mohammad Chehrazi, Kazem Mohammad, Maryam Nazemipour, MohammadAli Mansournia*, Lawrence C McCandless, Kimberly Page
    Background

    To apply a novel method to adjust for HIV knowledge as an unmeasured confounder for the effect of unsafe injection on future HIV testing.

    Methods

    The data were collected from 601 HIV-negative persons who inject drugs (PWID) from a cohort in San Francisco. The panel-data generalized estimating equations (GEE) technique was used to estimate the adjusted risk ratio (RR) for the effect of unsafe injection on not being tested (NBT) for HIV. Expert opinion quantified the bias parameters to adjust for insufficient knowledge about HIV transmission as an unmeasured confounder using Bayesian bias analysis.

    Results

    Expert opinion estimated that 2.5%–40.0% of PWID with unsafe injection had insufficient HIV knowledge; whereas 1.0%–20.0% who practiced safe injection had insufficient knowledge. Experts also estimated the RR for the association between insufficient knowledge and NBT for HIV as 1.1-5.0. The RR estimate for the association between unsafe injection and NBT for HIV, adjusted for measured confounders, was 0.96 (95% confidence interval: 0.89,1.03). However, the RR estimate decreased to 0.82 (95% credible interval: 0.64, 0.99) after adjusting for insufficient knowledge as an unmeasured confounder.

    Conclusion

    Our Bayesian approach that uses expert opinion to adjust for unmeasured confounders revealed that PWID who practice unsafe injection are more likely to be tested for HIV – an association that was not seen by conventional analysis.

    Keywords: Bayesian Analysis, Drug injections, HIV, Unmeasured confounder, Unsafe injection
  • Fateme Hosseini, Aliakbar Rasekhi*, Minoor Lamyian
    Introduction

    Breast milk is an ideal food for the healthy growth and development of infants. Breastfeeding is associated with benefits of lifelong health for both infants and mothers. This study aims to investigate the factors affecting breastfeeding duration in primiparous women referring to Tehran health centers.

    Methods

    In this analytical study, the population consisted of primiparous women of reproductive age who referred to Tehran health centers in 2015-2016 having a child aged 2-5 years. Data were collected by a questionnaire for measuring the level of Health Literacy for Iranian Adults (HELIA) in the urban population, a Socio-Economic Status (SES) questionnaire and interviews with mothers. Statistical analysis was done using Bayesian Poisson regression model and OpenBUGS software.

    Results

    In the present study, the minimum and maximum of breastfeeding duration were one and 24 months respectively, and the median duration of breastfeeding was 20 months. Also, exclusive breastfeeding was reported at 50.5%. The variables age of mother (CI 95%: -0.01, -0.008), health literacy score (CI 95%: 0.01, 0.02) and the first-time breastfeeding more than one hour after birth (CI 95%: -0.34, -0.04) had significant relationship with breastfeeding duration.

    Conclusion

    The health literacy score, the age of mother and the first-time breastfeeding more than one hour after birth had a significant relationship with breastfeeding duration. Therefore, considering the importance of the effect of maternal health literacy on breastfeeding, it is suggested that mothers of prepregnancy have the ability to obtain a high score of health literacy

    Keywords: Bayesian Analysis, Breastfeeding, Health literacy, Regression, Primiparity, Poisson distribution
  • فاطمه حسینی، علی اکبر راسخی*، می نور لمیعیان
    مقدمه
    تغذیه انحصاری به معنی تغذیه شیرخوار فقط با شیر مادر و بدون دریافت مایع و مواد غذایی جامد است. امروزه شیردهی انحصاری به عنوان یک راهبرد اساسی در تامین رشد و بقای کودک مورد توجه است. هدف مطالعه حاضر تعیین عوامل موثر بر تغذیه انحصاری با شیر مادر در زنان مراجعه کننده به مراکز بهداشتی درمانی شهر تهران است.
    روش کار
    در این مطالعه تحلیلی، نمونه ای از زنان نخست زای واقع در سنین باروری و دارای کودک دو سال تمام تا پنج سال گرفته شد که در سال های 1394 و 1395 به مراکز بهداشتی درمانی شهر تهران مراجعه کرده بودند. برای اندازه گیری سواد سلامت از پرسشنامه ی سنجش سطح سواد سلامت جمعیت شهری ایران و به روش مصاحبه ای ساختاریافته استفاده شد که سواد سلامت را با 33 گویه 5 گزینه ای می سنجد. داده ها با مدل رگرسیون دو حالتی بیزی (Bayesian) و با استفاده از نرم افزار OpenBUGS تحلیل شدند.
    یافته ها
    تغذیه انحصاری با شیر مادر 5/50 درصد گزارش شد. متغیرهای سن مادر (OR=0.87, CI: (0.80, 0.97))و نمره سواد سلامت (OR=1.11, CI: (1.16, 2.01)) رابطه معنی دار آماری با تغذیه انحصاری با شیر مادر داشتند. روش زایمان با تغذیه انحصاری با شیر مادر تاثیر معنی داری نداشت.
    نتیجه گیری
    نتایج نشان داد علاوه بر سن مادر، نمره سواد سلامت نقش مهمی در تغذیه انحصاری با شیر مادر دارد. بنابراین با توجه به اهمیت تاثیر سواد سلامت مادران در تغذیه انحصاری با شیر مادر پیشنهاد می شود که مادران قبل از بارداری توانایی کسب سطح بالای سواد سلامت مناسب را داشته باشند.
    کلید واژگان: تحلیل بیزی، تحلیل رگرسیونی، سواد سلامت، شیردهی انحصاری، نخست زایی
    Fatemeh Hoseini, Aliakbar Rasekhi*, Minoor Lamyian
    Introduction
    Exclusive breastfeeding (EBF) is infant’s breast milk consumption without supplementation of any kind of food or drink. Nowadays, EBF has been considered as a key strategy for ensuring the growth and survival of the child. This study aims to investigate the factors affecting exclusive breastfeeding in primiparous women referring to Tehran health centers.
    Methods
    In this analytical study, the sample consists of primiparous women in reproductive age who referred to Tehran health centers in 2015-2016 having a child aged 2-5 years. Health literacy was measured by Health Literacy for Iranian Adults (HELIA) questionnaire which measures health literacy with 25 items graded on a 5-point scale. The data were analyzed by binary Bayesian regression model and using OpenBUGS software.
    Results
    EBF was reported 50.5%. The variables of maternal age (OR=0.87, CI: (0.80, 0.97)) and health literacy score (OR=1.11, CI: (1.16, 2.01)) had significant relationship with EBF. The method of delivery had no significant effect.
    Conclusions
    Results showed that health literacy score played an important role in exclusive breastfeeding besides maternal age. Therefore, considering the importance of the effect of health literacy on breastfeeding, it is suggested that mothers have the ability to obtain a high score of health literacy before pregnancy time.
    Keywords: Bayesian Analysis, Exclusive Breastfeeding, Health literacy, Regression Analysis, Primiparity
  • Fatemeh Mohammadzadeh, Ebrahim Hajizadeh *, Aliakbar Rasekhi, Reza Omani‑Samani
    Background
    Generalized anxiety disorder (GAD) is a common disorder in infertile people. The aim of this study was the identification of associated risk factors for the severity of GAD in infertile people using an ordinal model with a flexible link function.
    Materials and Methods
    This cross‑sectional study was conducted on 1146 individuals with a couple’s infertility problem selected from an infertility center in Tehran, Iran. Data collected using self‑administered questionnaires include demographic/clinical information and GAD‑7. We used a Bayesian‑ordered symmetric power logit (splogit) model to identify the risk factors for the severity of GAD. Furthermore, we implemented standard ordinal models to compare with the ordered splogit model.
    Results
    Female gender (B coefficient 0.48, 95% credible interval [CrI]: 0.34–0.62), longer duration of infertility (B coefficient 0.03, 95% CrI: 0.01–0.04), previous treatment failure (B coefficient 0.17, 95% CrI: 0.03–0.30), and self‑cause of infertility (B coefficient 0.12, 95% CrI: 0.01–0.23) were associated factors with the severity of GAD. The splogit model had a better fit and performance to determine the associated risk factor for the severity of GAD as compared to standard models. It provided more precise estimates of risk factors and one more significant risk factor.
    Conclusion
    Infertile people with female gender, longer duration of infertility, failure in previous treatments, and self‑cause infertility are more likely to experience higher severity levels of GAD and require additional psychological, and support interventions. Furthermore, it can be argued that the ordinal splogit model is more powerful to identify the associated risk factors for the severity of GAD.
    Keywords: Anxiety, Bayesian analysis, generalized anxiety disorder‑7, infertility, risk factors
  • Asma Pourhoseingholi, Ahmad Reza Baghestani, Erfan Ghasemi, Alireza Akbarzadeh Baghban *, Mariet Ghazarian
    Background
    Use of methamphetamine (MA) and other stimulants has increased steadily over the past 10 years. Risk factor evaluation to reduce the problem in the community is one solution to protect people from addiction. This study aimed at using Bayesian zero- inflated Poisson (ZIP) model to investigate the relationship between the number of using crystal meth and some demographic factors in Tehran population.

    Methods
    A cross-sectional study was conducted to investigate crystal meth abuse in Tehran, the capital of Iran, in 2012. Stratified sampling method was used to select samples from 22 urban areas of Tehran. Trained researchers referred to the public places, such as streets, parks, squares, and libraries, to perform face-to-face interviews with the randomly selected samples. Bayesian ZIP model was used to perform the analysis, and SAS 9.3 program was used for data analysis.

    Results
    A total of 993 individuals were studied. According to Bayesian ZIP model, sex (mean= -0.27, 95%CI (-0.485, -0.061)), age (mean= 0.03, 95%CI (0.018, 0.043)), high school level education (mean= 1.276, 95%CI (0.699, 01.9)), diploma level education (mean= 10.4, 95%CI (0.511, 1.69)), and university level education (mean= 0.69, 95%CI (0.142, 1.33)) were all found to have significant associations with crystal meth usage, being the dependent variable.

    Conclusion
    Males, those with higher education levels, and older people in Tehran population are more likely to use crystal meth. This demographic information may be useful in designing preventive programs. Moreover, it is better to analyze count data with excessive zeroes using Bayesian zero- inflated model instead of the usual count models.
    Keywords: Bayesian analysis, Crystal meth, Zero-inflated Poisson, Tehran population
  • Maryam Naserinejad, Ahmad Reza Baghestani, Sadjad Shojaee, Mohammad Amin Pourhoseingholi, Hadis Najafimehr, Mehrdad Haghazali
    Aim: The aim of this study was to investigate the impact of diabetes and hypertension on colorectal cancer (CRC) mortality.
    Background
    One of the methodology in epidemiological studies is to use self-report questionnaires to gather data, this is the easiest and cheapest method but involves with misclassification bias. We use robust Bayesian adjustment to correct this bias.
    Methods
    One of the methodology in epidemiological studies is to use self-report questionnaires to gather data, this is the easiest and cheapest method but involves with misclassification bias. We use robust Bayesian adjustment to correct this bias.
    Results
    The effect size with ignorance misclassification bias was 0.78 for diabetes and 0.94 for hypertension respectively which both of them were not significant. After adjusting the misclassification and performing the robust Bayesian analysis, we arrived at region (0.27, 3.4) for OR of diabetes and (0.21, 2.31) for hypertension.
    Conclusion
    our study demonstrated that diabetes and hypertension increase the risk of mortality in CRC patients, using robust Bayesian analysis and misclassification in diagnosis these two exposure could change or confound the results of this association.
    Keywords: Colorectal cancer, Diabetes, Hypertension, Misclassification, Bayesian analysis
  • سید حسین سید آقا، امیر کاوسی*، احمدرضا باغستانی، مهشید ناصحی
    مقدمه و اهداف
    سل در بین بیماری های عفونی تک عاملی شایع ترین علت مرگ بوده و دارای رتبه ی دهم مرگ در بین همه بیماری ها در جهان است. این بیماری از فرد مبتلا به افراد نزدیک از نظر مکانی و به طور عمده زیر یک سقف سرایت می کند. هدف این مطالعه بررسی ارتباط ساختار همبستگی مکانی (فضایی) و زمان بهبودی بیماران مبتلا به سل ریوی در ایران است.
    روش کار
    در این مطالعه داده های 20554 بیمار مبتلا به سل ریوی اسمیر خلط مثبت در ایران برای سال های 93-1389 مورد استفاده قرار گرفت. برای تجزیه و تحلیل داده ها از مدل زمان شکست شتاب دار پارامتری همراه با شکنندگی مکانی (فضایی) با رویکرد بیزی استفاده شد. برای برازش مدل از نرم افزارOpenBUGS 4/1 و به منظور پهنه بندی اثرهای محیطی از ArcGIS استفاده شد.
    یافته ها
    میانگین سنی بیماران 35/50 سال با خطای استاندارد 6/21 سال بود. یافته های مطالعه نشان داد که محیط جغرافیایی، جنس، وضع زندانی بودن، درجه مثبت بودن اسمیر در زمان تشخیص و محل زندگی افراد (شهر، روستا) تاثیرتاثیر معنی داری بر زمان بهبودی بیماران سل ریوی داشت. زمان بهبودی بیمارانی که با درجه اسمیر 9-1 باسیل، 1+ و 2+ تحت درمان قرار گرفته بودند به طور معنی داری کم تر از بقیه افراد بود.
    نتیجه گیری: بر اساس این مطالعه محیط جغرافیایی و محل زندگی افراد تاثیر معنی داری بر زمان بهبودی بیماران سل ریوی اسمیر مثبت دارد. در برخی استان ها این تاثیر وابسته به درجه ی مثبت بودن اسمیر و در برخی استان ها مستقل از آن است.
    کلید واژگان: مدل زمان شکست شتاب دار پارامتری، آمار فضایی، تحلیل بیزی، تحلیل بقای پارامتری، سل ریوی
    Sh Seyedagha, A. Kavousi *, Ar Baghestani, M. Nasehi
    Background And Objectives
    Tuberculosis is the most common cause of death among single-factor infectious diseases and is the tenth cause of death among all diseases in the world. The disease is spread mainly from an infected person through close contact with other people living in one place. The aim of this study was to investigate the relationship between the spatial correlation structure and the recovery time of patients with pulmonary tuberculosis in Iran.
    Methods
    In this applied study, the data of 20554 patients with sputum smear-positive pulmonary tuberculosis in Iran from 1389 to 1393 were used. A parametric accelerated failure time model with spatial frailty and batesian approach was used to analyze the data. The OpenBUGS 1.4 was used for programming and the ArcGIS 9.2 was used for mapping the environmental impact on tuberculosis.
    Results
    The mean age of the patients was 50.35 years with a standard deviation of 21.6 years. The results showed that the geographical environment, gender, prison condition, degree of smear positivity at diagnosis and location (urban-rural) had a significant impact on the recovery time of pulmonary tuberculosis patients. The recovery time of patients with smear grade 1-9 bacilli, 1 and 2 who were treated was significantly shorter than the others.
    Conclusion
    According to the study, geographical environment and the location have a significant impact on smear positive patients’ recovery time. This impact depends on the degree of smear positivity in some provinces and is independent of it in some other provinces.
    Keywords: Parametric accelerated failure time model, Spatial statistics, Bayesian analysis, Parametric survival analysis, Pulmonary tuberculosis
  • طیب محمدی، سلیمان خیری *، مرتضی سدهی
    زمینه و هدف
    خون و فرآورده های حاصل از آن جایگاه ویژه ای در نظام سلامت هر کشوری دارد. هدف از این تحقیق، مدل بندی تعداد دفعات معافیت از اهدای خون و شناسایی عوامل موثر بر آن بر اساس مدل های رگرسیون شمارشی انباشته در صفر با رویکرد بیزی است.
    روش بررسی
    داده های تحقیق حاضر برگرفته از یک مطالعه طولی است که در آن 864 اهداکننده خون برای بار اول و حداکثر به مدت 5 سال (از 1387 تا 1391) پیگیری شدند. تعداد دفعات معافیت از اهدای خون طی 5 سال به عنوان متغیر وابسته و همچنین، جنس، وزن، سن، تحصیلات، وضعیت شغلی و تاهل به عنوان متغیرهای مستقل استفاده شدند. تحلیل داده ها بر اساس دو مدل رگرسیون پواسن انباشته در صفر و دو جمله ای منفی انباشته در صفر با رویکرد بیزی انجام گرفت. برآورد پارامترها با استفاده از روش مونت کارلوی زنجیر مارکوفی (MCMC) به کمک نرم افزار وین باگز (WinBUGS) و مقایسه مدل ها بر اساس معیار بیزی اطلاع انحرافی (DIC) انجام شد.
    یافته ها
    بر اساس معیار اطلاع انحرافی (DIC)، مدل رگرسیون دو جمله ای منفی انباشته در صفر به عنوان مدل بهتر انتخاب شد. از میان متغیرهای مستقل، فقط متغیر وزن با داشتن ضریب رگرسیونی مثبت، معنی دار شد.
    نتیجه گیری
    افراد با وزن بالاتر به علت مراجعه بیشتر برای اهدای خون، تعداد معافیت بیشتری داشتند؛ لذا با آموزش و اطلاع رسانی به این افراد در خصوص علل معافیت از اهدای خون می توان تعداد معافیت آن ها را کاهش داد.
    کلید واژگان: تحلیل بیزی، مدلهای شمارشی، صفر انباشته، دوجمله ای منفی، معافیت خون، مونت کارلوی زنجیر مارکوفی
    Tayeb Mohamadi, Soleiman Kheiri *, Morteza Sedehi
    Background And Aims
    Blood and its products have a special role in healthy system of any country. The aim of this study was to modeling the number of blood donor deferral and detecting its main factors based on zero-inflated count regression models.
    Methods
    The data used in this study were drawn from a longitudinal study in which 864 first-time donors were followed up for a maximum five years, from 2008 to 2013. The response variable was the number of blood donor deferral during five years. Also, sex, weight, age, marital status, education and job were used as independent variables. For analyzing data, two zero-inflated Poisson and zero-inflated negative binomial models were used by Bayesian technique. Assessment of models was carried done using Marko chain Monte Carlo methods (MCMC) by WinBUGS. Comparison of models was done using deviance information Bayesian criterion (DIC).
    Results
    Based on the results of DIC, the zero-inflated negative binomial regression model had smaller DIC and was selected as better model. The body weight had a significant positive effect on the number of blood donor deferral.
    Conclusion
    Donors with higher body weight returned to donation more, so, their deferral number was higher. Therefore, training and informing can reduce their blood deferral numbers.
    Keywords: Bayesian Analysis, Count Regression Model, Zero, Inflated, Negative Binomial, Blood donor deferral, Markov Chain Monte Carlo
  • Fatemeh Sadat Hosseini, Baharanchi, Ebrahim Hajizadeh, Ahmad Reza Baghestani, Katayoun Najafizadeh, Shadi Shafaghi
    Background
    Bronchiolitis obliterans syndrome (BOS) is delayed allograft deterioration after lung transplant (LTX) that is clinically characterized by ≥ 20% decline from the baseline value of forced expiratory volume during the first second (FEV1). BOS is still a major obstacle limiting long-term survival post-LTX. The main aim of this study was to determine the predictors of BOS and death in Iranian LTX recipients.
    Materials And Methods
    This retrospective cohort study included 44 LTX recipients who survived ≥ 3 months post-LTX at the Masih Daneshvari Hospital, Tehran, Iran from 2000 to 2014. The outcome was time from lung transplantation to BOS and/or death (due to all causes except BOS). We used competing risks analysis to assess the effect of other factors on the cumulative incidence function of BOS and death. We applied a Fine and Gray model with Bayesian approach.
    Results
    The recipients’ age (Mean ± SD) was 36.7 ± 14.5 yr. 11 (25%) recipients developed BOS as the first event within the first five years post-LTX and 13 (30%) died due to all causes except for BOS. Our results showed that CMV infection was associated with a significant increase in risk of developing BOS [hazard ratio (HR) 1.22 (95% credible set: (1.01, 3.2)] controlling for other variables. Bilateral transplantation [HR (95% credible set): 2.4(1.51, 4.05)] and CMV infection [HR (95% credible set): 2.02 (1.67, 2.55)] were predictors of the mortality risk.
    Conclusion
    CMV infection was a predictor of BOS risk in the studied patients. Moreover, bilateral transplantation and CMV infection were significant predictors of mortality in the present sample. Multi-center studies with larger sample sizes are required to better study the other risk factors, and the pathophysiologic mechanisms of BOS.
    Keywords: Lung transplant, Bronchiolitis obliterans syndrome, Competing risks analysis, Cumulative Incidence Function, Fine, Gray model, Bayesian analysis
  • علیرضا ابدی، باقر پهلوان زاده *، کرامت نوری جلیانی، سید مصطفی حسینی
    زمینه و هدف
    عدم توانایی در اندازه گیری دقیق مواجهه ها در مطالعات اپیدمیولوژیکی مشکلی است که تقریبا در همه مطالعات مخصوصا مطالعات مورد- شاهدی رخ می دهد. بسته به شدت رخداد سو اندازه گیری، نتایج می تواند تحت تاثیر قرار گیرد. روش های موجود حل این مشکل اغلب زمان و هزینه زیادی را می برند و برای بعضی مواجهه قابلیت اجرایی ندارند. اخیرا روش های جدیدی برای مطالعات مورد-شاهدی دارای همسان سازی یک به یک پیشنهادشده اند که این مشکلات را تا حدودی حل کرده اند. در اینجا ما به دنبال تعمیم این روش برای مطالعات مورد-شاهدی دارای همسان سازی چندگانه هستیم.
    روش بررسی
    در اینجا توزیع پیشین دریخله استاندارد برای توزیع چندجمله ای تعمیم داده شد تا بتوان اطلاعات مربوط به پارامتر ارتباط مواجهه-بیماری (OR) را جدای از اطلاعات مربوط به سایر پارامترها وارد مدل کردیم. برای اطلاعات پیشین (OR) از اطلاعاتی که در سایر مطالعات درباره ارتباط مواجهه و بیماری بود استفاده کردیم. برای تصحیح سو طبقه بندی نیز آنالیز حساسیت انجام دادیم نتایج تحت سه مدل بیزی به دست آمد.
    یافته ها
    یافته های مدل بیزی خام مشابه با مدل کلاسیک بود مدل دوم که در آن از اطلاعات OR استفاده شد شدیدا تحت تاثیر این اطلاعات قرار گرفت. مدل پیشنهادی سوم بیشترین تعدیل اریبی را برای عوامل خطر فلزات سنگین، مصرف دخانیات و مصرف مواد مخدر انجام می دهد به طوری که فلزات سنگین را که مدل خام (رگرسیون لجستیک کلاسیک) بر بروز سرطان ریه تاثیرگذار نشان می داد را غیر معنی دار نشان داد. آنالیز حساسیت نیز نشان داد که مدل در مقابل تغییر مقادیر حساسیت و ویژگی پایدار است.
    نتیجه گیری
    مطالعه حاضر نشان داد که اگرچه نتایج مدل سوم در بیشتر مواجهه ها تغییر چندانی با مدل دوم نداشت ولی می توان گفت که مدل تا حدود زیادی می تواند سو طبقه بندی ها را اصلاح کند.
    کلید واژگان: سوء طبقه بندی، روش های بیزی، آنالیز حساسیت، سرطان ریه
    Alireza Abadi, Bagher Pahlavanzade *, Keramat Nourijelyani, Seyed Mostafa Hosseini
    Background and Objective
    Inability to measure exact exposure in epidemiological studies is a common in many epidemiological studies, especially when information on exposure is obtained retrospectively, as in any case–control design. Depending on the extent of misclassification, results may be affected. Existing methods for solving this problem require a lot of time and money and for and for some of exposures it is not practical. Recently, new methods have been proposed in 1:1 matched case–control study that have been solved these problems to some extent. This paper extend existing Bayesian method to adjust for misclassification in matched case–control Studies with 1:2 matching.
    Materials and Methods
    The standard Dirichlet prior distribution for a multinomial model is extended to allow separation of prior assertions about the exposure–disease association from assertions about other parameters. Information that exist in literature about association between exposure and disease used as prior information about OR. Correction of misclassification was investigated using Sensitivity analysis.
    Results
    The results of naïve Bayesian model were similar to the classic model. The second Bayesian model that use prior information about the OR, heavily affected by this information. The third model provides maximum bias adjustment for heavy metals, tobacco and opium. This model showed that heavy metal is not an important risk factor although raw model (logistic regression Classic) detected this exposure as an influencing factor on the incidence of lung cancer. Sensitivity analysis showed that third model is robust regarding to different levels of Sensitivity and Specificity.
    Conclusion
    Result of this study showed that although in most of exposures the results of the second and third model were similar but the proposed model able to somewhat correct the misclassification.
    Keywords: Misclassification, Bayesian Analysis, Sensitivity Analysis, Lung Cancer
  • شناسایی عوامل موثر بر فواصل زمانی بین اهداهای خون بر اساس مدل شکنندگی کاکس به روش بیزی / یک مطالعه مقطعی بر حسب نمونه ای از افراد مراجعه کننده به مراکز انتقال خون در ایران
    فاطمه جهانگیری مهر، سلیمان خیری*، مرتضی سدهی
    مقدمه
    شناسایی افراد مستعد اهدای خون نقش زیادی در تهیه خون سالم دارد. هرچه فاصله زمانی بین دو اهدای خون یک داوطلب اهدای خون کمتر باشد شانس اینکه داوطلب اهدای خون به یک فرد اهدا کننده مستمر خون تبدیل شود افزایش می یابد. هدف از انجام این مطالعه، شناسایی عوامل موثر بر فواصل زمانی بین اهداهای خون در یک نمونه از اهدا کنندگان بار اول خون است.
    روش ها
    در مطالعه ای توصیفی تحلیلی از اطلاعات 864 نفر اهداکننده خون در پایگاه انتقال خون شهرکرد استفاده شد. از نظر چارچوب داده های بقا، فواصل زمانی بین اهداهای خون جزء پیشامدهای بازگشتی محسوب می شوند. برای شناسایی عوامل خطر موثر بر فاصله های زمانی بین داده های بقای بازگشتی، با توجه به همبستگی زمانهای بقا برای هر فرد، مدل کاکس با وجود اثر شکنندگی گاما به داده ها برازش داده شد و برآورد پارامترها تحت رویکرد بیزی و بر اساس الگوریتم های مونت کارلوی زنجیر مارکوفی و به کمک نرم افزار WinBUGS بدست آمد.
    یافته ها
    از میان متغیرهای مورد بررسی، متغیر وزن بطور معنی داری شانس اهدای خون را افزایش داده و فاصله زمانی بین اهداهای خون را کاهش داده است. متغیر سن بطور جزیی تاثیر منفی بر شانس اهدای خون داشته است بطوریکه شانس اهدای خون برای افرادی که سن کمتری داشته اند بیشتر بوده و فواصل زمانی بین اهداهای خون آنها بیشتر بوده است.
    نتیجه گیری
    به دلیل وجود همبستگی در بین زمان های بازگشتی اهدای خون هر فرد، مدل شکنندگی کاکس برازش بهتری نسبت به مدل معمولی کاکس بر داده های اهدای خون داشته است. با فرهنگ سازی و افزایش آگاهی می توان افراد با وزن کمتر و با سن بیشتر را به اهدای خون ترغیب نمود.
    کلید واژگان: اهدای خون، مدل کاکس، اثر شکنندگی، تحلیل بیزی
    Fateme Jahangiri Mehr, Soleiman Kheiri*, Morteza Sedehi
    Background
    Identify talented people to donate predisposed a major role in supplying healthy blood. If the time interval between donations decrease, the chance that voluntary of blood donation be a regular donor increase. The aim of this study was to determine factors affecting the interval between blood donations in a sample of first-time blood donors.
    Methods
    Data of a Cross-sectional Study of 864 blood donors in Shahrekord Blood Transfusion Center were used. In survival analysis framework, the times of blood donations are recurrent events. To identify the risk factors affecting the survival time of the return intervals between donations, Cox model with shared gamma frailty was fitted to the data and estimate of the parameters obtained based on Bayesian approach using Markov Chain Monte Carlo algorithm by WinBUGS.
    Findings
    ANOVA analysis on information related to age, sex, job and exposure with cigarettes in selected population from two city showed that the selected population in two cities is completely homogeneous and similar. And a Significant differences between the average concentration of lead in the nail of subjects under study in two cities is there (P<0.001).The average concentration of lead in nail samples in Isfahan was 0.1037 mg/g and the average concentration of lead nail samples in Chadegan city was 0.0875 mg/g.
    Conclusion
    Because of better fitting of Cox's shared frailty model, the correlation between the intervals of blood donations was confirmed. With increasing awareness and culture, the lower-weight and higher-age people should be encouraged to donate more
    Keywords: Blood Donation, Cox Model, Shared frailty effect, Bayesian Analysis, Markov Chain Monte Carlo
  • Mohammad Gholami-Fesharaki, Anoshiravan Kazemnejad
    The main assumptions in liner mixed model are normality and independency of random effect component. Unfortunately, these two assumptions might be unrealistic in some situations. Therefore, in this paper, we will discuss about the analysis of Bayesian analysis of non-normal and non-independent mixed model using skew-normal/independent distributions, and finally, this methodology is illustrated through an application to a triglyceride data from Isfahan’s Mobarakeh Steel Company Cohort Study.
    Keywords: multilevel modeling, bayesian analysis, normal, independent distributions, triglycerides
  • رویا بداقلو، سلیمان خیری*، مرتضی سدهی، محمدرضا آخوند
    مقدمه
    کراتوکنوس یک بیماری دو طرفه قرنیه است، که یکی از راه های درمان آن انجام پیوند است. ممکن است پیوند توسط سیستم ایمنی فرد گیرنده، دفع گردد که این مسئله موجب شکست پیوند خواهد شد. هدف این مطالعه تحلیل بیزی عوامل موثر بر دفع پیوند قرنیه دو طرفه بر اساس تابع مفصل است.
    روش کار
    یک نمونه از زمان بقای پیوند دوطرفه کراتوکنوس بررسی شد. از آنجایی که بین زمان های دفع پیوند قرنیه هبستگی وجود دارد، برای تحلیل داده های زمان دفع پیوند قرنیه دو طرفه از مفصل ارشمیدسی کلایتون استفاده شد، بطوریکه برآورد پارامترها به روش تحلیل بیزی و بر اساس الگوریتم های مونت کارلوی زنجیر مارکوفی و به کمک نرم افزار انجام گرفت. برای مدل بندی تابع خطر، مدل خطر وایبول بکار گرفته شد.
    نتایج
    وجود واسکولاریزاسیون قرنیه در زمان دفع پیوند اول و تازگی قرنیه در زمان دفع پیوند دوم تاثیر معنی داری بر زمان دفع پیوند داشتند. همچنین سن در زمان انجام پیوند، تاثیر جزئی معنی دار در هر دو زمان دفع اول و دوم داشت. میانگین پسین پارامتر همبستگی برای مفصل کلایتون برابر با 0/98 وضریب همبستگی تاوکندال بین زمان های دفع پیوند اول و دوم قرنیه 0/3 به دست آمد.
    بحث و نتیجه گیری
    نتایج حاکی از همبستگی بین زمان های دفع پیوند اول و دوم است. افزایش سن بصورت جزئی خطر دفع پیوند را بالا می برد. نگهداری قرنیه در محلول و همچنین وجود واسکولاریزاسیون قرنیه باعث افزایش خطر دفع پیوند قرنیه می شود.
    کلید واژگان: دفع پیوند قرنیه دو طرفه، کراتوکنوس، تحلیل بیزی، مفصل کلایتون، مونت کارلوی زنجیر مارکوفی
    Roya Bodaghlu, Soleiman Kheiri*, Morteza Sedehi, Mohammad Reza Akhoond
    Background
    Keratoconus is a bilateral corneal disease, which one way to cure it is to transplant. The transplantation may be rejected by recipient's immune system, which leads to failure of the graft. This study aimed to analysis the factors affecting bilateral corneal graft rejection based on copula function.
    Methods
    A sample of bilateral graft rejection times was assessed. Since correlation exists between the times of corneal graft rejection, Clayton Archimedean copula was used. The parameters estimation was performed using Bayesian analysis based on Markov Chain Monte Carlo methods by WinBUGS. For modeling hazard function, Weibull hazard model was used.
    Findings
    Corneal vascularization in the first graft and corneal freshness in the second graft had a significant impact on graft rejection time. The age at transplantation had also a significant partial effect on both the first and the second rejection. The correlation parameter of Clayton copula was estimated as 0.98, so Kendall,s tau correlation coefficients between the first and the second corneal graft rejection time obtained as 0.3.
    Conclusion
    Results indicate a correlation between the first and the second transplant rejection time. Aging increases partially the graft rejection risk. Maintenance of corneal in solution and also presence of corneal vascularization increase the risk of corneal graft rejection.
    Keywords: Bilateral Corneal Graft Rejection, Keratoconus, Bayesian Analysis, Clayton Copula, Markov Chain Monte Carlo
  • محمد جواد زارع سخویدی، حمیده میهن پور، حسین فلاح زاده، مهرداد مستغاثی، غلامحسین حلوانی، فاطمه سموری
    مقدمه
    قضاوت خبره و مدل های مواجهه به طور گسترده ای جهت برآورد مواجهه تنفسی در محیط های شغلی به کار می روند. با این حال هنوز نمی توان آنها را جایگزین روش های معمول نمونه برداری دانست. هدف این مطالعه کاربرد آنالیز بیز از طریق تلفیق نتایج دو مدل SSA (Structured Subjective Assessment Method) و MEASE (Material Estimated and Assessment of Substance Exposure) با داده های نمونه برداری و بررسی نقاط ضعف و قوت هر کدام از راهکارها می باشد.
    روش بررسی
    این مطالعه به صورت تحلیلی – مقطعی بر روی وظیفه توزین و بسته بندی مواد اولیه در یک صنعت معدنی انجام گرفت. جهت تعیین غلظت آلاینده های هوا، نمونه برداری از هوا صورت پذیرفت و با روش وزن سنجی تعیین مقدار شد. سه کارشناس غلظت آلاینده را بر اساس مدل های SSA و MEASE ارزیابی نمودند. آنالیز های آماری توصیفی و بیزی داده ها انجام پذیرفت.
    یافته ها
    هر سه روش میزان مواجهه را بیشتر از حد مجاز ارزیابی نمودند ومیانگین غلظت در آنها تفاوت معنی داری نداشت (435/0p=). هرچندروش SSA از پراکندگی بالاتری (74% RSD=) نسبت به روش نمونه برداری (53% RSD=) برخوردار بود و تفاوتی بین پراکندگی در دو روش نمونه برداری و MEASE وجود نداشت، استفاده از SSA به عنوان توزیع پیشین ارزیابی محتاطانه تری را نسبت به MEASE ارائه داد (گروه کنترل 4: برابر 74/0 در برابر 54/0).
    نتیجه گیری
    استفاده از مدل SSA می تواند به عنوان جایگزینی در تعیین توزیع پیشین احتمال در آنالیز بیزی داده ها در بهداشت حرفه ای مورد استفاده قرار گیرد. مدل MEASE در مقایسه با SSA برای برآورد مواجهه استنشاقی از کارآیی کمتری برخوردار بوده و نیازمند مطالعات اعتبار سنجی بیشتری می باشد.
    کلید واژگان: ارزیابی مواجهه، مواجهه تنفسی، آنالیز بیزی، مدل های مواجهه
    Mj Zare Sakhvidi, H. Mihanpoor, H. Falahzadeh, M. Mostaghaci, Gh Halvani, F. Samouri
    Background
    expert judgments in combination with exposure models are used extensively in estimation of inhalational exposures in occupational environments. However، their reliability is not as good as conventional air sampling methods. The aim of this study was to investigate the applicability، weaknesses and strengths of Bayesian analysis in combination with SSA (Structured Subjective Assessment Method) and MEASE (Material Estimated and Assessment of Substance Exposure) and its comparison with air sampling data.
    Methods
    the analytical cross sectional –study performed on a weighting، mixing and packing task in an inorganic processing industry. Air samples were taken and analyzed by gravimetric methods. Inhalation exposures were estimated by 3 occupational hygienists. Descriptive and Bayesian analysis were performed on data.
    Results
    all three methods guaranteed that the exposure is above exposure limit. There was no difference between means reported in methods (p=0. 435). However، SSA had higher variability in comparison with sampling. There was no difference between direct sampling and MEASE variability. Use of SSA as a prior in Bayesian analysis gives more conservative than MEASE method (category 4:0. 74 vs. 0. 54)
    Discussion
    SSA is a good choice as a prior distribution in Bayesian analysis. MEASE has not good results in comparison with SSA in inhalation exposure assessment. It seems that MEASE needs more validation.
    Keywords: Exposure assessment, Inhalation exposure, Bayesian analysis, Exposure Models
  • Mohsen Vahedi, Mohammad Amin Pourhoseingholi, Ahmadreze Baghestani, Alireza Abadi, Sara Sobhi, Zeinab Fazeli
    Background
    Lung cancer is an important cause of cancer mortality. Mortality is a familiar projection to address the burden of cancers. However, according to Iranian death registry, about 20% of death statistics were still recorded in misclassified categories. The aim of this study was to estimate lung cancer mortality in Iranian population, using Bayesian approach to revise this misclassification.
    Methods
    We analyzed National death Statistic reported by the Iranian Ministry of Health and Medical Education from 1995 to 2004. Lung cancer [ICD-10; C34] was expressed as the annual mortality rates/100,000 by sex and by age group. The Bayesian approach to correct and account for misclassification effects in Poisson count regression with a beta prior was employed to estimate the mortality rate of lung cancer in age and sex groups.
    Results
    According to the Bayesian analysis, there were between 20 to 30 percent underreported mortality records in deaths due to lung cancer, and its mortality rate increased through the recent years.
    Conclusion
    Our findings suggested a substantial undercount of Lung cancer mortality in Iranian population. Therefore, policy makers who determine research and treatment priorities on death rates should pay more attention to this underreported data.
    Keywords: Lung cancer, Mortality, Bayesian analysis
  • الهه کاظمی، مهدی رهگذر، عنایت الله بخشی، ایمانه عسگری، مسعود کریملو
    رگرسیون لوجستیک مدلی عمومی برای تحلیل داده های پزشکی و اپیدمیولوژیکی می باشد و اخیرا محققین معدودی تحقیقات خود را به تحلیل مدل های رگرسیون لوجستیک با وجود مقادیر گمشده در متغیرهای کمکی معطوف داشته اند. در بسیاری از پژوهش ها محققین با مجموعه داده هایی مواجه هستند که دارای مقادیر گمشده است. گمشدگی تهدید عمده ای برای درستی نتایج حاصل از مجموعه داده ها محسوب می شوند و اجتناب از آن بسیار مشکل است.
    ساتن و کارول تابع درستنمایی ویژه ای را برای برآورد پارامترهای مدل رگرسیون لوجستیک وقتی که برخی متغیرهای کمکی با مقادیر گمشده از نوع مکانیسم گمشدگی تصادفی (MAR) باشند و سایر متغیرها به طور کامل مشاهده شده باشند، معرفی کرده اند. در این پژوهش از این تابع درستنمایی در تحلیل بیزی برای برآورد پارامترهای مدل رگرسیون لوجستیک استفاده شده است و نتایج به دست آمده با روش های جانهی چندگانه و واحد کامل مقایسه شده است.
    روش های مذکور را بر روی داده های شبیه سازی شده و داده های دندانپزشکی اجرا کرده و نتایج مقایسه ها نشان داد که برآوردهای به دست آمده از روش بیزی دارای انحراف معیارکوچکتری نسبت به دو روش دیگر می باشند.
    پس از مقایسه نتایج حاصل از سه روش مذکور نتیجه گرفته شد که اگر مکانیسم گمشدگی تصادفی باشد، به کارگیری تحلیل بیزی با تکنیک زنجیرهای مارکوف مونت کارلویی (MCMC) منجر به برآوردهای دقیق و فاصله اطمینان کوتاه تری نسبت به روش جانهی چندگانه و روش واحد کامل می شود.
    کلید واژگان: رگرسیون لوجستیک، گمشدگی تصادفی (MAR)، تحلیل بیزی، زنجیرهای مارکوف مونت کارلویی (MCMC)، جانهی چندگانه، DMFT
    Background and Objectives
    Logistic Regression is a general model for medical and epidemiological data analysis. Recently few researchers have directed their studies to analysis of Logistic Regression with missing value at covariate variable. While the missing is a major threat in results authenticity of data set, in many studies the researchers face data with missing value and it is difficult to avoid such a case in studies.
    Material &
    Methods
    Satten and Carroll, in the case of completely observed value of covariate variable and some covariate variable with missing at random mechanism (MAR), introduced a special likelihood function for parameters estimation of Logistic Regression model. In this research the above- mentioned likelihood function has been used in Bayesian analysis for parameters estimation of Logistic Regression model and the conclusions are compared with the Multiple Imputation method and Complete Case method.
    Results
    The above-mentioned methods were applied on both simulation data and dentistry data and concluded that The parameters estimation from SCMCMC method had less variance in comparison with parameters estimation from Multiple Imputation and Complete Case methods.
    Conclusion
    After comparison of the three mentioned methods results it had been concluded that if the mechanism is of missing at random the application of Bayesian analysis with MCMC causes to more accurate estimation and shorter Confidence Intervals than the Multiple Imputation method and Complete Case.
    Keywords: Logistic Regression, Missing at Random (MAR), Bayesian Analysis, Markov Chain Monte Carlo, Multiple Imputation, DMFT
نکته
  • نتایج بر اساس تاریخ انتشار مرتب شده‌اند.
  • کلیدواژه مورد نظر شما تنها در فیلد کلیدواژگان مقالات جستجو شده‌است. به منظور حذف نتایج غیر مرتبط، جستجو تنها در مقالات مجلاتی انجام شده که با مجله ماخذ هم موضوع هستند.
  • در صورتی که می‌خواهید جستجو را در همه موضوعات و با شرایط دیگر تکرار کنید به صفحه جستجوی پیشرفته مجلات مراجعه کنید.
درخواست پشتیبانی - گزارش اشکال