logistic regression
در نشریات گروه جغرافیا-
هدف پژوهش حاضر بررسی عوامل موثر بر افزایش جذابیت مقاصد گردشگری در شهر تهران می باشد. تحقیق حاضر از نظر هدف، کاربردی و روش انجام آن توصیفی- تحلیلی است. ابزار گردآوری داده ها پرسش نامه و مصاحبه می باشد. جامعه آماری پژوهش، شامل کارشناسان و متخصصان حوزه گردشگری می باشد که با استفاده از فرمول کوکران و به روش نمونه گیری تصادفی ساده، 210 کارشناس حوزه گردشگری به عنوان نمونه انتخاب گردید. برای تحلیل داده ها از آزمون های توصیفی و آزمون رگرسیون لجستیک استفاده شد. نتایج پژوهش گویای آن است که از بین 210 فعال در حوزه گردشگری شهر تهران، 91 نفر، معادل 43/3 درصد باور داشتند که جذابیت مقاصد گردشگری شهر تهران در سطح بالا، 29 درصد باور داشتند که سطح جذابیت در سطح مناسب و تنها 27 درصد معتقد بودند که سطح جذابیت مقاصد گردشگری شهر تهران در سطح پایینی قرار دارد. نتایج در زمینه عوامل موثر بر افزایش جذابیت مقاصد با توجه به توسعه گردشگری نیز نشان داد که از بین 4 عامل در نظر گرفته شده، به ترتیب عوامل 1) فرصت های تجاری نوآورانه با ضریب تاثیر (0/613)، 2) دارایی های طبیعی/ فرهنگی و تاریخی شهر با ضریب تاثیر (0/577)، 3) توسعه زیرساخت های گردشگری با ضریب تاثیر (0/497) و 4) عامل توسعه شهری با ضریب تاثیر (0/473) بیشترین اثرات را بر افزایش جذابیت مقاصد با توجه به توسعه گردشگری در شهر تهران داشته اند.
کلید واژگان: گردشگری شهری، مقااصد گردشگری، رگرسیون لجستیک، تهرانThe objective of this research is to investigate the factors that enhance the attractiveness of tourism destinations in Tehran. This study is applied in nature and employs a descriptive-analytical methodology. The data collection methods include the use of questionnaires and interviews. The statistical population comprises tourism experts and specialists, and through the application of Cochran's formula and simple random sampling, a sample of 210 tourism experts was selected. Data analysis was performed utilizing descriptive statistics and logistic regression tests. The findings of the research reveal that, out of the 210 tourism professionals in Tehran, 91 individuals, representing 43.3%, perceived the attractiveness of Tehran's tourism destinations to be at a high level; 29% assessed it as moderate; and only 27% regarded it as low. Furthermore, the results concerning the factors influencing the enhancement of attractiveness in alignment with tourism development indicate that, among the four factors considered, the most significant were: 1) innovative business opportunities, with an impact coefficient of 0.613; 2) the city's natural, cultural, and historical assets, with an impact coefficient of 0.577; 3) the development of tourism infrastructure, with an impact coefficient of 0.497; and 4) urban development, with an impact coefficient of 0.473.
Keywords: Urban Tourism, Tourist Destinations, Logistic Regression, Tehran -
با توجه به این که در حوزه آبخیز چم گردلان شکل های مختلف حرکات توده ای به ویژه در مسیر راه های ارتباطی، اراضی زراعی و مسکونی وجود دارد، ضرورت ایجاد نقشه های پهنه بندی برای آن ها و نیز بررسی عوامل موثر در وقوع آن به منظور پیشگیری و کنترل این پدیده را اجتناب ناپذیر می سازد. لذا در این پژوهش، ضمن بازدیدهای میدانی، اقدام به ایجاد نقشه های زمین شناسی، فیزیوگرافی، کاربری اراضی، پوشش گیاهی، فرسایش، کلیماتولوژی، خاکشناسی و ژئومورفولوژی در محیط GIS گردید. روش انجام کار در این پژوهش بر مبنای تشخیص واحدهای کاری ژئومورفولوژی بوده که به کمک تفسیر عکس های هوایی و قطع دادن نقشه های پایه صورت گرفته است. سپس عوامل موثر بر وقوع حرکات توده ای با استفاده از روابط رگرسیون لجستیک مورد بررسی قرار گرفت. به نحوی که در آن عواملی مانند شیب، نوع سازند زمین شناسی، خاکشناسی، اقلیم به عنوان متغیرهای مستقل و فراوانی وقوع حرکات توده ای به عنوان تابعی از عوامل مذکور در نظر گرفته شد. نتایج حاصله نشان داد که موثرترین عوامل در ارتباط با فراوانی وقوع زمین لغزش ها در منطقه، به ترتیب عبارت از شیب، تشکیلات زمین شناسی، جنس توده لغزشی (نوع و میزان املاح در خاک) و کاربری اراضی می باشند.
کلید واژگان: حرکت توده ای، رگرسیون لجستیک، عکس هوایی، GISConsidering that there are different forms of mass movements in the ChamGardlan watershed, especially along communication routes, agricultural and residential areas, it is necessary to create refugee maps Therefore, it is impossible to examine the factors influencing its situation in order to prevent and control this phenomenon. Therefore, during the field visits, geographical, physiography, land use, vegetation cover, soil, climatology, geography and geomorphology maps were produced in the GIS environment. The method of this research has been accomplished base of distinction of the geomorphological units while using aerial photos and crossing basis maps. Then, the effective factors on the occuration of mass movements were studied using logistic regression equations. So that, the factors such as slope, geological formation type, pedologic, climatic, etc. were taked into consideration as independant variables, and mass movements occurance frequency as function of mentioned factors.The result indicated that the effective factors related to frequency of land sliding happening in the area in arrangement, are slope, geological formation type and mass movements type (both kind and amount of salts in soil) and also landuse.
Keywords: Mass Movement, Logistic Regression, Aerial Photo, GIS -
نشریه هیدروژیومورفولوژی، پیاپی 40 (پاییز 1403)، صص 102 -123در پژوهش حاضر خطر وقوع زمین لغزش در حوضه آبریز زمکان، واقع در استان کرمانشاه، ارزیابی شد. دو مدل ماشین بردار پشتیبان (SVM) و رگرسیون لجستیک برای تهیه نقشه حساسیت زمین لغزش استفاده شد. در راستای اهداف تحقیق، 13 لایه اطلاعاتی شامل ارتفاع، شیب، جهت شیب، عدد ناهمواری ملتون، تحدب سطح زمین، طول دامنه، عمق دره، رطوبت توپوگرافیک، بارش، سازندهای زمین شناسی، فاصله از آبراهه، فاصله از جاده و پوشش گیاهی به عنوان متغیرهای مستقل استفاده شد. حدود 70 درصد پیکسل های لغزشی حوضه به منظور آموزش و 30 درصد برای اعتبارسنجی مدل استفاده شدند. اعتبارسنجی مدل ها با کاربست منحنی ROC صورت گرفت. نتایج نشان دهنده کارایی و دقت بالاتر تابع پایه شعاعی (RBF) مدل SVM برای تهیه نقشه خطر زمین لغزش منطقه است. مساحت زیر منحنی (AUC) تابع پایه شعاعی حدود 951/0 برای آموزش مدل و 944/0 برای آزمون مدل به دست آمد. نتایج بیانگر این است که فاکتورهای شیب با ضریب 28/0، بارش با ضریب 27/0، لیتولوژی با ضریب 26/0 و ارتفاع با ضریب 22/0 کنترل کننده های اصلی وقوع زمین لغزش در سطح حوضه آبریز زمکان هستند. توابع مدل SVM و هم چنین رگرسیون لجستیک نیز اثرات قطعی فاکتورهای انتخابی بر وقوع زمین لغزش را تائید کردند. براساس نقشه پهنه بندی زمین لغزش حدود 35 درصد مساحت حوضه مطالعاتی در کلاس خطرپذیری زیاد و بسیار زیاد قرار گرفته است. پهنه های مذکور عمدتا در نیمه شرقی حوضه توزیع شده اند. ارتفاع زیاد، غلبه شیب های تند، دریافت نزولات جوی قابل توجه و رخنمون وسیع سازند کژدمی با تناوبی از لایه های آهکی، رسی، مارنی و شیلی مهم ترین دلایل حساسیت بالای این پهنه ها نسبت به زمین لغزش هستند.کلید واژگان: زمین لغزش، رگرسیون لجستیک، ماشین بردار پشتیبان (SVM)، حوضه آبریز زمکان، استان کرمانشاهIn the current study, the risk of landslides in the Zamkan Watershed, located in Kermanshah Province, was evaluated. Two machine learning models, Support Vector Machine (SVM), and Logistic Regression, were used to prepare a landslide susceptibility map. Toward this, 13 informational layers including elevation, slope, aspect, Melton ruggedness number, terrain convexity, stream length, valley depth, topographic wetness index, precipitation, geological formations, distance from rivers, distance from roads, and vegetation cover were utilized as independent variables. Approximately 70% of the watershed's landslide pixels were used for model training, and 30% for model validation. Model validation was performed using ROC curves. The results indicated the higher performance and accuracy of the radial basis function (RBF) kernel of the SVM model for generating landslide hazard maps in the study area. The area under the curve (AUC) for the RBF kernel was approximately 0.951 for model training and 0.944 for model testing. The results suggest that slope with a coefficient of 0.28, precipitation with a coefficient of 0.27, lithology with a coefficient of 0.26, and elevation with a coefficient of 0.22 are the main controlling factors for landslides occurrence in the Zamkan Watershed. Both the SVM model and logistic regression confirmed the deterministic effects of selected factors on landslides. About 35% of the study area as classified as highly susceptible to landslides, primarily in the eastern half of the watershed. Factors such as high elevation, steep slopes, heavy precipitation, and the Kazhdomi Formation's composition were identified as key contributors to this susceptibility.Keywords: Landslide, Logistic Regression, Support Vector Machine (SVM), Zamkan Watershed, Kermanshah Province
-
فرونشست یک پدیده زیست محیطی و ناشی از نشست تدریجی و یا پایین رفتن ناگهانی سطح زمین است. پدیده فرونشست در مناطق مسکونی، صنعتی و کشاورزی می تواند خسارات فاجعه باری را ایجاد کند. در اکثر مناطق ایران همبستگی بالایی بین فرونشست زمین و کاهش تراز سطح آب زیرزمینی و درنتیجه تراکم لایه های خاک وجود دارد. در این پژوهش با استفاده از دو سری زمانی تصاویر رادار با روزنه مصنوعی از سنجنده سنتینل متعلق به سال های 2014 و 2019، میزان فرونشست در دشت دامنه (شهرستان فریدن) محاسبه گردید سپس تغییرات سطح آب چاه های پیزومتری منطقه با استفاده از اطلاعات موجود از 9 حلقه چاه دربازه زمانی1394 تا 1398 مورد بررسی قرار گرفت، نتایج بررسی همبستگی میزان فرونشست زمین با تغییرات سطح آب زیرزمینی در سطح %95 معنی دار بوده است. در ادامه پژوهش با استفاده از مدل رگرسیون لجستیک روند فرونشست در محدوده مورد مطالعه پیش بینی و نقشه احتمال فرونشست تهیه و به عنوان متغیر وابسته برای مدل رگرسیون لجستیک ایجاد شد. متغیرهای مستقل استفاده شده شامل ارتفاع، شیب، جهت شیب، زمین شناسی، فاصله از جاده، فاصله از رودخانه، کاربری اراضی، فاصله از روستا، سطح آب های زیرزمینی، چاه های پیزومتری بوده است. خروجی مدل نقشه پهنه بندی خطر فرونشست بوده که در پنج کلاس ایجاد گردید، ارزیابی دقت و اعتبارسنجی مدل رگرسیون لجستیک با استفاده از منحنی مشخصه عملکرد سیستم انجام گرفت و دقت(89/0) به دست آمد که دقت خوب مدل رگرسیون لجستیک در تولید نقشه احتمال فرونشست در محدوده مورد مطالعه می باشد، در خروجی مدل مشخص گردید که مساحت 1980 هکتار معادل 9/7 % دارای فرونشست با درجه بسیار شدید بوده که وضعیت منطقه را در شرایط خطرناک قرار داده است و نیاز به کنترل و مدیریت برای کاهش این اثر تخریبی است.
کلید واژگان: رادار سنتینل، رگرسیون لجستیک، فرونشست، دشت دامنهSubsidence is an environmental phenomenon caused by the gradual subsidence or sudden subsidence of the earthchr('39')s surface. The phenomenon of subsidence in residential, industrial and agricultural areas can cause catastrophic damage. In most parts of Iran, there is a high correlation between land subsidence and the decrease of groundwater level and consequently the density of soil layers. In this study, using two time series of radar images with artificial apertures from Sentinel sensors belonging to 2014 and 2019, the amount of subsidence in Damaneh plain (Frieden city) was calculated. Wells were studied in the period 2014 to 2019, the results of the study of the correlation between land subsidence with changes in groundwater level at the level of 95% was significant. In the continuation of the research, using the logistic regression model, the subsidence trend in the study area was predicted and a subsidence probability map was prepared and created as a dependent variable for the logistic regression model. The independent variables used included altitude, slope, slope direction, geology, distance from the road, distance from the river, land use, distance from the village, groundwater level, piezometric wells. The output of the model is subsidence risk zoning map which was created in five classes. The accuracy and validation of the logistic regression model was evaluated using the system performance characteristic curve and the accuracy (0.89) was obtained. The good accuracy of the logistic regression model in producing the probability map Subsidence is in the study area. In the output of the model, it was found that the area of 1980 hectares, equivalent to 7.9%, has a very severe subsidence that has put the situation in a dangerous situation and the need for control and management to reduce this destructive effect.
Keywords: subsidence, radar, sentinel, damaneh plain, logistic regression -
Ardebil plain is one of the flood points that requires the understanding of the flood potential. In this study, the flooding potential of Ardebil plain was performed using environmental parameters, observations of flood points and lack of floods and prediction algorithms were made including random forest and logistics regression. Independent parameters include DEM, Slope, Aspect, Distance from waterway, distance from dam, runoff accumulation, land use, landforms and indexes Topographic Position Index (TPI), Modified Catchment Area (MCA), Terrain Ruggedness Index (TRI), Topographic Wetness Index (TWI) and Stream Power Index (SPI) Indices. The Roc-AUC assessment results showed that the RF and LR model were validated by 0.99 and 0.98, and it shows that random forest models and logistics regression have the ability to predict and prepare a flood sensitivity map in Ardebil plain. The output of parameters effective in flooding showed that the marginal areas located around the central plain of Ardabil have less flood-flooding potential than the central areas. The results also showed that by moving from the southwest of the plain to its northeast, the grade of floods increased. This increase in flooding potential around the main drainage of the plain is greater than elsewhere.Keywords: Ardabil Plain, flood, logistic regression, Random forest
-
در حوضه قهرمانلو به علت شرایط خاص خاک شناسی، آب وهوایی و تکتونیکی زمین لغزش های زیادی رخ داده است که خسارت های زیادی به زمین های کشاورزی، خطوط ارتباطی و نواحی روستایی وارد کرده است. در این پژوهش با استفاده از مدل رگرسیون لجستیک و منطق فازی نقشه شدت خطر زمین لغزش ها تهیه گردید و انواع آن بدست آمد بدین صورت که با استفاده از 12 معیار شامل شیب، جهت شیب، ارتفاع، تراکم شبکه آبراهه، فاصله از شبکه آبراهه، خطوط ارتباطی، زمین شناسی، شاخص رطوبت، بارش، کاربری اراضی، تراکم پوشش گیاهی و شاخص توپوگرافی زمین به عنوان متغیرمستقل و موقعیت زمین لغزش های موجود که با استفاده از مطالعات میدانی و دورسنجی مجموعا 28 مورد شناسایی شده است، به عنوان متغیر وابسته به مدل معرفی گردید. نتایج مدل با دقت Pseudo R2 برابر با 2311/0 و شاخص ROC برابر با 9134/0، بیانگر این است که متغیرهای فاصله از آبراهه، کاربری اراضی، بارندگی و فاصله ازجاده در بروز زمین لغزش در حوضه قهرمانلو موثر می باشند و همچنین از کل مساحت 10241 هکتاری حوضه، میزان 310 هکتار یعنی 3 درصد و 3/216 هکتار به میزان 11/2 درصد، به ترتیب دارای پتانسیل زمین لغزش خیلی بالا و بالا می باشند، همچنین 5/66درصد ازحوضه به علت قرارگیری در ارتفاعات زیاد و قرارگیری در موقعیت جهات غربی دارای دامنه هایی با پتانسیل خیلی کم برای زمین لغزش می باشند همچنین 11 مورد از زمین لغزش ها از نوع انتقالی، 2 مورد انتقالی کم عمق و 15 مورد از پهنه های پیش بینی شده به صورت چرخشی می باشند.
کلید واژگان: حوضه قهرمانلو، رگرسیون لجستیک، منطق فازی، انواع زمین لغزش، سیستم اطلاعات جغرفیاییLandslides are among the most destructive natural phenomena, and their harmful effects have also increased as a result of increased human occupation and activities in nature. When the resistance force is less than the force of the material weight on the slope due to the sheer force of the soil, landslides would occur with the least intervention of secondary factors including heavy rain, earthquake, etc. Due to the special conditions of geology, climate, tectonics, etc., many landslides occurred in Ghahremanlou catchment area located in North Khorasan province, resulted in a lot of damage to the farmlands, communication lines and rural settlements.The study aimed to identify landslide-prone slopes and classify landslide types in Ghahremanlou catchment using a logistic regression model and fuzzy logic to investigate and identify the factors affecting landslides in this catchment and to draw a landslide sensitivity zoning map. Landslide mapping and identification map can be used as an efficient method in planning to reduce the risks and damages caused by landslides.Ghahremanlou catchment area is located in the southwest of Farooj city, located between longitudes 57 degrees and 55 minutes to 58 degrees and 4 minutes east and between latitudes 37 degrees and 2 minutes to 37 degrees and 13 minutes.The villages of Mayvan, Chokanlu, Ostad, Khosravieh, Hasht Sorkh, and Ghahremanlou are located within this catchment.The area is located between the geological formations of Kopehdagh in the north and Aladagh in the south and has Sandstone, granite and shale rocks. The slopes are composed of Orbitolina limestones from the Cretaceous geological period (with the Tirgan Formation) and red marls and Neogene sandstones. In this study, landslides in the area were determined by field surveys and Google Earth images. Then, using a digital model of a 30 m altitude SRTM sensor, slope map, slope direction, topography, and hydrographic network of the catchment were calculated.A road network map has been prepared from OSM and Google Earth data by digitizing the main road lines and side roads in the study area. The average annual rainfall map is extracted from meteorological data of North Khorasan province and its map is prepared based on the IDW interpolation model. To determine the vegetation of the region, the normalized vegetation difference index algorithm was used. Using the Wetness index, from the Landsat 8 satellite image for 1399, the OLI sensor of the humidity index of Ghahramanloo catchment has been calculated.Then, a fuzzy model and logistic regression were used to determine the effect of each of these parameters and effective criteria in landslides.In this study, 28 slopes in which landslides occurred were identified. Then 12 independent variables have been calculated including slope, slope direction, etc. After preparation using the fuzzy logic model (linear normalization functions (straight and inverse), norm and Gaussian between zero and one) entered the logistic regression model. Then the position of landslides in the region as a dependent variable, zero or one (boolean) was prepared and entered into the logistic regression model. After introducing independent variables related to the logistic regression model, 70% of the pixels with a landslide (in 28 identified positions) were introduced to the model as a training sample and 30% of it as a model for checking the accuracy of the model in the Pseudo index. R2 and ROC were used. The results are obtained by identifying areas with landslide potential using the Natural Breaks function and considering the same variance and scatter of data in each class. These results show that the most effective causes of landslides in the region are distance from the waterway, land use, rainfall, and distance from the road.On the other hand, the farther they are from the communication lines, the lower the impact on landslides. Also, in the land-use variable (according to how it is normalized), barren lands have less effect than rangelands, and also increasing rainfall has a positive effect on the occurrence of landslides in the catchment. In a way that with increasing rainfall, the occurrence of landslides also increases. To evaluate the accuracy of the regression model in this research, the value of Pseudo R2 equal to 0.2311 and ROC equal to 0.9134 indicates a good fit of logistic regression and its appropriate descriptive capability. Based on the landslide classification models by Kruden and Warrens, 1996, the prediction of landslides is classified using a logistic regression model, and landslides in the region into rotational, shallow, and transitional types.The results of the existing landslides indicates that out of the total area of 10241 hectares in Ghahremanlou catchment, 310 hectares, i.e., 3%, and 216.3 hectares, i.e., 2.11%, have very high landslide potential, respectively. And 950.50 hectares of the area, i.e., 9.28%, has a medium landslide potential. On the other hand, 66.5% of the catchment is located in the western direction (west, northwest, and southwest) due to its location at high altitudes and steep slopes, with very little potential for landslides.
Keywords: Ghahremanlou Catchment, logistic regression, Fuzzy logic, Landslide, GIS -
هدف این پژوهش، پیش بینی مکانی حساسیت فرسایش خندقی در حوضه آبخیز کلوچه بیجار در استان کردستان است. به این منظور، ابتدا 950 راس خندق (هدکت) با نسبت 70 به 30 تفکیک و شناسایی شد. سپس بیست عامل موثر بر توسعه فرسایش خندقی در منطقه شامل درجه شیب، جهت شیب، ارتفاع از سطح دریا، انحنای عرضی شیب، انحنای طولی شیب، شاخص رطوبت توپوگرافی، شاخص توان آبراهه، شاخص حمل رسوب، لیتولوژی، کاربری اراضی، بارندگی، فاصله از جاده، تراکم جاده، فاصله از گسل، تراکم گسل، فاصله از آبراهه، تراکم آبراهه، گروه هیدرولوژیکی خاک، ژیومورفولوژی و نفوذپذیری نسبی در محیط سیستم اطلاعات جغرافیایی تهیه و رقومی شدند. در این تحقیق از دو مدل رگرسیون لجستیک و منطق فازی استفاده شد. برای تعیین صحت نقشه های نهایی از درصد مساحت زیر منحنی (AUC) بهره گرفته شد. نتایج پژوهش نشان داد که فاکتورهای فاصله از رودخانه، تراکم رودخانه و درجه شیب به ترتیب بیشترین تاثیر را در فرسایش خندقی داشتند. نتایج اعتبارسنجی مدل ها براساس داده های صحت سنجی نیز نشان داد که مدل رگرسیون لجستیک (AUC=0.876) نسبت به مدل منطق فازی (AUC=0.815) در شناسایی مناطق مستعد به ایجاد فرسایش خندقی دارای قدرت پیش بینی بیشتری بوده است.
کلید واژگان: حساسیت، حوضه آبخیز کلوچه بیجار، رگرسیون لجستیک، عملکرد مدل، فرسایش خندقی، منطق فازیIntroductionSoil erosion by water is one of the most important processes of land degradation, especially in semi-arid regions. Among the different types of water erosion, gully erosion is one of the most important events affecting soil destruction, changing the landscape and water resources, and land regression [1]. Gully erosion is the most obvious form of soil erosion, which leads to a decrease in soil production capacity and restrictions on land use, and can be a serious danger to roads, fences, and various structures, and also causes significant soil losses and the production of large amounts of sediment [2]. This erosion is also called gully erosion. A gully is a relatively permanent waterway that temporary streams of water pass through during rainfall and carry a large amount of sediment [11]. The formation of gullies is always accompanied by erosion and changes in the appearance of the land and causes the production of a significant amount of sediment, destruction of lands, roads, irrigation networks and filling of dams [9]. Gullies, which are considered major indicators of environmental changes in most cases, are not considered normal forms of erosion due to their rapid growth [8]. In the studies conducted both inside the country and abroad, various methods have been used to evaluate the potential of gully erosion, which are mentioned below. Among the methods used to determine the potential of gully erosion are regression models [17, 10, 4, 15, 23, 22], knowledge-based model of hierarchical analysis [6, 21, 22, 3, 29], fuzzy logic. [12 and 13], Dempster-Shafer model [14], artificial neural network and support vector machine [33], etc. pointed out that, based on this, the watershed of Klocheh Bijar in Kurdistan province has been severely affected by this type of erosion and caused the loss of many agricultural lands in the studied basin have been eroded. Therefore, the gully erosion susceptibility mapping of the studied basin was studied and investigated using Logistic Regression and Fuzzy Logic models, and finally mapping of gully erosion in the studied area and the validity of both used models were verified.
Material and MethodsGully erosion inventory map In this study, 950 points at the top of gullies (head cuts) were recorded as a distribution map of gully erosion using Google Earth images and field survey. Then, they were divided into two parts of training data (70%) and validation (30 percent) were divided. The training data were used in the model learning section with the logistic regression method and the validation data were used to determine the validity/prediction power of the models. Logistic regression model Multiple logistic regression is a multivariate technique that considers several physical parameters that may affect the probability. In this method, the values of the independent variable can be expressed in binary form (0 and 1) and as a numerical quantity. Fuzzy logic model In classical set theory, an element is either a member of the set or not (zero and one). Fuzzy set theory extends this concept and introduces graded membership. So that an element can be a member of a set to some degree and not completely. In other words, a fuzzy set is a set of elements with similar characteristics, where the set has a certain degree from zero to one. Zero means no membership and one mean full membership [24]; Therefore, before implementing the fuzzy model, it is necessary to determine the membership functions for each of the layers mentioned above and set the value of the layers in a range between (zero and one) and then enter the layers into the fuzzy model. To implement the fuzzy technique, a gamma operator is needed, the value of the modulating gamma is between zero and one, zero gamma is equivalent to fuzzy multiplication and one gamma is equivalent to fuzzy addition.
Results and DiscussionGully erosion susceptibility map logistic regression Table. 1 shows TOL and VIF values of factors affecting the occurrence of gully erosion. Viewing this table shows that all effective factors have a TOL value greater than 0.1 and a VIF less than 10, which indicates the absence of multiple collinearities between them, and all of them are used as input for the model. They were branched with appropriate logistic regression. Fuzzy Logic Figure 5 shows the prediction map of gully erosion using fuzzy logic. Although the pattern of distribution of different areas from the map obtained with the fuzzy logic model follows the logistic regression model, but it seems that an exponential exaggeration in the area of the area with the probability of gully erosion is very high is seen, which is probably related to choose the numbers for the gamma value during modeling with this method. However, the areas with high and very high probability of occurrence correspond to the top of gullies (head cuts).
ConclusionGully erosion is one of the most important natural hazards and the main cause of land degradation in the Klocheh Bijar watershed in Kurdistan province. Recognizing the most important factors affecting the occurrence of this phenomenon as well as predicting areas prone to its occurrence is one of the management and preventive measures to better understand the area before any engineering/structural and biological measures (land management) or a combination of both. Reduction of possible damages. Preparing a gully erosion susceptibility map can be a useful guide for planners, managers, organizations and decision makers regarding the management of these areas. In this research, 950 points at the top of gullies (head cuts) were recorded as a distribution map of gully erosion using Google Earth images and field survey and were divided in the ratio of 70 to 30. Multilinear correlation test was used to check the internal correlation of 20 effective factors, as well as two models of logistic regression and fuzzy logic were used to prepare prediction maps of gully erosion in the study area.
Keywords: Gully erosion, Sensitivity, Logistic regression, Fuzzy logic, Model performance, Klocheh Bijar watershed -
ناپایداری های دامنه ای از مشخص ترین نوع مخاطرات زمین ریخت شناسی محسوب می شوند که با دخالت های انسانی تشدید می گردند و بیشتر تاسیسات انسانی، به ویژه جاده های کوهستانی را مورد تهدید قرار می دهند، و به این ترتیب هزینه های سنگینی را به دولت و ساکنین محلی تحمیل می کنند. بنابراین ارزیابی کمی پتانسیل وقوع ناپایداری ها در مناطقی که به لحاظ وضعیت جغرافیایی و ساخت وسازهای انسانی مستعد وقوع ناپایداری ها هستند ضروری می باشد. منطقه مورد مطالعه بزرگراه در حال احداث تهران- شمال می باشد که به دلیل جغرافیای خاص همیشه در معرض انواع ناپایداری ها قرار دارد.در این مطالعه از روش رگرسیون لجستیک برای تحلیل کمی ناپایداری ها در دامنه های مشرف بر اتوبان در حال احداث تهران- شمال (حد فاصل تهران- سولقان) استفاده شده است. جهت بررسی پتانسیل وقوع حرکات دامنه ای لایه های جداگانه 14 فاکتور موثر در وقوع ناپایداری ها (شامل طبقات ارتفاعی، شیب، جهت شیب، زمین شناسی، کاربری اراضی، بارش، فاصله از گسل، فاصله از رودخانه، فاصله از جاده، پوشش گیاهی، اقلیم، LS، SPI و TWI) در محیط GIS تهیه شدند، سپس با لایه پراکنش ناپایداری های موجود انطباق داده شدند و تراکم آن ها در واحد سطح محاسبه شد. در ادامه با استفاده از نرم افزار Terrset مدل رگرسیون لجستیک انجام شد. درنهایت می توان گفت مدل آماری رگرسیون لجستیک مدلی مناسب جهت پهنه بندی احتمال وقوع ناپایداری ها در منطقه مورد مطالعه در کنار خطوط ارتباطی است. به عنوان نتیجه گیری نهایی می توان گفت علاوه بر عوامل طبیعی، عوامل انسانی خصوصا جاده سازی غیراصولی می تواند نقش مهمی در وقوع ناپایداری های دامنه های مشرف بر جاده داشته باشد، برای کاهش نسبی خطرات و افزایش میزان پایداری دامنه ها لازم است تا حد ممکن از تغییر اکوسیستم و کاربری اراضی اجتناب نمود، و همچنین هرگونه سیاست گذاری به منظور احداث سازه ها متناسب با شرایط ژیومورفولوژیکی و زمین شناسی منطقه صورت پذیرد.
کلید واژگان: ناپایداری های دامنه ای، رگرسیون لجستیک، بزرگراه تهران-شمال، پهنه بندی خطرIntroductionSlope instabilities are one of the most distinctive types of geomorphic hazards that are exacerbated by human interference and threaten most of the human installations, especially mountainous highways and impose heavy costs on the government and local residents. Each year, slope instabilities cause enormous economic damages to highway, railways, power transmission and communication lines, irrigation and watering canals, ore extraction, as well as oil and gas refining installations, infrastructures in cities, factories and industrial centers, dams, artificial and natural lakes, forests, pastures and natural resources, farms, residential areas and villages or threaten them. Nowadays, many instabilities are resulted by human intervention and manipulations. One of the effective human factors in instability occurrence is the construction of highway. Highway construction, especially in mountainous areas, increases the probability of occurrence of various types of instabilities, as it changes the natural balance of the slopes and causes deformations in the land. Each year, lots of casualties and financial losses are imposed by the occurrence of various types of instabilities in the slopes overlooking the highways, which also cause the destruction of many natural resources in the country. However, the construction of roads, highways and freeways is necessary and unavoidable in today’s life.The Tehran-North highway will be the route that connect the Iran’s capital Tehran with the southern shores of the Caspian Sea.
Materials and methodsThis contribution aims to study slope instabilities along this highway using logistic regression method. In this regard, layers of 14 effective factors were identified, comprised of elevation classes, slope, aspect, geology, land use, precipitation, distance from fault, river and highway, normalized difference vegetation index (NDVI), climate, slope length (LS), stream power index (SPI) and topographic wetness index (TWI). Consequently, maps of the factors responsible for instabilities were prepared as separate layers in the GIS environment and transferred into the Idrisi software. The whole procedure included: (1) preparation of digital elevation model (DEM), river and fault layers based on the 1:25,000 topographic map of the area, as well as distance maps from rivers and faults, (2) creating slope and aspect maps from DEM, (3) preparation of land use and NDVI maps of the region based on unmatched classification of Landsat 8 image of OLI sensor, (4) preparation of geological map, (5) preparation of precipitation and climate layers based on the information obtained from the meteorological organization, (6) creating LS, SPI and TWI layers based on the DEM, (7) conversion of the distribution data of the regional instabilities using Landsat satellite and Google Earth images, (8) correlating the information layers with the regional instability map and calculating their density per unit area, and (9) performing the logistic regression model using Terrset software.
Result and discussionResults obtained by applying logistic regression model showed that the most important factors affecting slope instabilities in the Tehran-Soleghan highway area are distance from fault and climate. 27.14% of the Soleghan highway area possesses medium to high potential for instabilities, within which 86.26% of the instabilities have occurred. Furthermore, 4.57% of the Soleghan highway area shows very high risk in terms of instability occurrence, encompassing 61% of the occurred instabilities. According to the prepared maps, the middle and southern parts and a small section in the north of the Tehran-Soleghan highway area have the highest potential for instability occurrence. The high value of the ROC index and its proximity to the end value of 1 indicates that instabilities strongly correlate with the probability values derived from the logistic regression model. Additionally, the assessment of the instability potential map by the SCAI index showed that there is a high correlation between the prepared risk maps and the occurred instabilities, which have been confirmed by field surveys. The obtained results are in a good agreement with the general opinion that SCAI decreases especially in high and very high risk classes and indicates a high correlation between the prepared risk maps and the occurred instabilities and field surveys in study areas.
ConclusionFinally, it can be mentioned that the logistic regression model is suitable for preparing the zonation of the probability of instability occurrence along the edges of the studied highway. As a final conclusion, it can be concluded that in addition to natural factors, the- human-made factors and particularly unsystematic highway construction can play an important role in the instability occurrences on the slopes overlooking the highway and in order to reduce the relative risks and increase the stability of the slopes, it is necessary to avoid manipulating the ecosystem and changing the current land use as much as possible, in addition to policy making for constructions in accordance with geomorphological and geological features of the area.
Keywords: Slope instabilities, Logistic Regression, Tehran-North highway, Risk zonation -
توسعه شهرنشینی و مهاجرت های بی رویه جمعیت روستایی به مناطق شهری از پدیده های قابل توجهی است که موجب تخریب اراضی کشاورزی، مناظر طبیعی و فضاهای باز عمومی گردیده است. پژوهش حاضر رشد شهر همدان را از سال 1375 تا 1398 ارزیابی و سپس تا سال 1420 شبیه سازی می نماید. روش تحقیق توصیفی- تحلیلی بوده و از مدل اتوماسیون سلولی جهت شبیه سازی توسعه کالبدی، از رگرسیون لجستیک برای تحلیل تاثیر متغیرهای مختلف در رشد کالبدی و از زنجیره مارکوف جهت تحلیل تغییرات کاربری بهره گرفته شده است. صحت سنجی تصاویر ماهواره لندست نیز با توجه به میزان کاپا و میزان دقت کلی قابل قبول ارزیابی شده است. نتایج پژوهش نشان می دهد متغیر مرکزیت شهر و اراضی کشاورزی به ترتیب با میزان ROC، 873/0 و 881/0 دارای بیشترین تاثیر در رشد شهری همدان طی 23 سال اخیر داشته است. مساحت مناطق ساخته شده (شهری) در سال 1375 در مقایسه با 1390 بیش از دو برابر شده است و در مقایسه با سال 1398 تقریبا 5/2 برابر شده است. از طرف دیگر رشد جمعیت در طول این 23 سال 48/1 برابر شده است. این مساله نشان می دهد نسبت رشد مناطق ساخته شده (شهری) از نسبت رشد جمعیت در شهر همدان به شدت پیشی گرفته است. نتایج حاصل از ارزیابی مدل نشان گر این است که مدل تلفیقی موردنظر قادر است درک دقیقی از فرآیندها و تحولات شهری از قبیل ارزیابی توسعه های گذشته و پیشبینی جهات و میزان توسعه کالبدی آتی فراهم آورد.
کلید واژگان: توسعه کالبدی، اتوماسیون سلولی، رگرسیون لجستیک، زنجیره مارکوف، شهر همدانUrban development and irregular migration of rural population to urban areas are significant phenomena that have damaged agricultural lands, natural landscapes, and public open spaces. This issue doubles the need for informed guidance and spatial organization to better understand the processes of urban development for future planning. The present study aimed to evaluate the growth of Hamedan city from 1996 to 2019 and then simulate until 2041. The research method is descriptive-analytical, and the cellular automation model was used to simulate physical development, and logistic regression was applied to analyze the impact of different variables on physical growth and the Markov chain was used to analyze user changes. The validity of Landsat satellite images is also evaluated with respect to the kappa value and acceptable overall accuracy. The results indicate that city center and agricultural land variables with ROC of 0.873 and 0.881, respectively, had the most impact on Hamadan urban growth during the last 23 years. The area of urban areas in 1996 was doubled compared to the year 2011, and almost 2.5 times more than in 2019. On the other hand, population growth increased 1.48 times over the past 23 years. This indicates that the growth rate of urban areas exceeded the population growth rate in Hamadan. The results of the model evaluation indicate that the integrated model is able to provide a precise understanding of urban processes and developments such as evaluating past developments and predicting directions and rates of future physical development.
Keywords: physical development, cellular automata, Logistic regression, Markov chain, Hamedan -
جنگل ها به عنوان یکی از مهم ترین منابع طبیعی تجدید شونده نقش حیاتی در پایداری زیست بوم ها ایفا می نمایند. یکی از مهم ترین آشفتگی های موثر بر اکوسیستم های جنگلی زاگرس، آتش سوزی جنگل می باشد. بنابراین شناسایی مناطق بحرانی آتش سوزی جهت کاهش خسارات های احتمالی، امری لازم و ضروری است. هدف این تحقیق، بررسی میزان تاثیر متغیرهای موثر در ایجاد آتش سوزی و تهیه نقشه خطر آتش سوزی می باشد. به همین منظور متغیرهای موثر بر آتش سوزی شامل ارتفاع از سطح دریا، شیب، جهت، فاصله از مناطق مسکونی، فاصله از آبراهه ها و فاصله از جاده جهت تعیین تاثیر هریک در آتش سوزی، بررسی شدند. نقشه ارتفاع از سطح دریا، شیب و جهت جغرافیایی با کمک مدل رقومی ارتفاع تهیه شد. نقشه های فاصله از مناطق مسکونی و فاصله از جاده از نقشه های رقومی 1/25000 تهیه شد. همچنین مناطقی که طی سال های 90-94 در آن ها آتش سوزی رخ داده بود، با دستگاه جی پی اس برداشت گردید. در این تحقیق از روش رگرسیون لجستیک برای بررسی تاثیر عوامل مختلف در آتش سوزی استفاده شد. نتایج نشان داد که ارتفاع از سطح دریا، فاصله از آبراهه و درصد شیب، مهم ترین عوامل تاثیرگذار در آتش سوزی جنگل در منطقه بودند. مدل سازی براساس سه متغیری که ارتباط معنی داری با آتش سوزی جنگل در منطقه داشتند و ضرایب حاصل از روش رگرسیون لجستیک، انجام شد. نتایج اعتبارسنجی مدل با ضریب تبیین نگلکرک حدود 0/500 و ضریب منحنی راک 0/701 نشان از دقت، برازش و اعتبار مناسب مدل به دست آمده داشت. همچنین نتایج نشان داد که 81 درصد از مساحت منطقه در مناطق بحرانی و خطرناک قرار دارد.
کلید واژگان: آتش سوزی، راک، رگرسیون لجستیک، مدل سازیForests play a vital role in the sustainability of ecosystems as one of the most important natural renewable resources. One of the most important disturbances affecting Zagros forest ecosystems is forest fires. Therefore, identifying critical fire areas to reduce potential damage is necessary. The purpose of this study is to investigate the effect of effective variables in causing fire and to prepare a fire risk map. For this purpose, the variables affecting the fire including altitude, slope, direction, Distance from residential areas, distance from waterways and distance from the road were determined to determine the impact of each on the fire. Elevation map of sea level, slope and geographical direction was prepared with the help of digital elevation model. Distance maps of residential areas and distance from the road were prepared from digital maps of 1.25000. Also, the areas where fires occurred during the years 90-94 were harvested by GPS. In this study, logistic regression method was used to investigate the effect of various factors on fire. The results showed that altitude, distance from waterway and slope percentage were the most important factors influencing forest fires in the region. Modeling was performed based on three variables that had a significant relationship with forest fires in the region and the coefficients obtained from the logistic regression method. The validation results of the model with a negligence coefficient of about 0.500 and a rock curve coefficient of 0.701 showed the accuracy, fit and validity of the obtained model. The results also showed that 81% of the area is located in critical and dangerous areas.
Keywords: Fire, Rock, Logistic Regression, Modeling -
فعال شدن بازارچه های مرزی در چند سال اخیر موجبات رشد اقتصادی بیشتری را برای شهرهای مرزی فراهم کرده است؛ یعنی جریانی که به توسعه اقتصادی و رشد شهری (رشد شهرها) منجر می شود. روشن است که توسعه فعالیت های اقتصادی موجب اشتغال می شود و به مقدار زیادی موجب جذب جمعیت به شهرها (مهاجرپذیری) و رشد شهرنشینی می شود که این رشد عامل موثری برای توسعه اراضی و گسترش کالبد شهری است. بر همین مبنا، هدف اصلی پژوهش حاضر بررسی تاثیر بازارچه مرزی تمرچین بر گسترش فیزیکی شهر پیرانشهر در یک دهه اخیر است. بنابراین، برای بررسی الگوی فضایی - زمانی و فرایندهای گسترش شهری پیرانشهر (سال های 1385-1393)، از تصاویر ماهواره ای لندست، تصویرETM+ TM (سال های 1385 و 1393) در نرم افزار Idrisi و مدل رگرسیون لجستیک استفاده شده است. نتایج ادغام داده های سنجش از دور و مدل رگرسیون لجستیک (LR) در نرم افزار SPSS اطلاعات مهمی در مورد الگو و روند تغییر پوشش زمین ارایه داده که بیانگر آن است که بازارچه مرزی تمرچین و رشد اقتصادی ناشی از آن همراه با ایجاد زمینه های اشتغال عاملی اساسی در گسترش فیزیکی شهر پیرانشهر بوده است تا جایی که در روند این گسترش شهری روستای «شین آباد» در شهر ادغام شده است و همچنین نتایج حاصل از به کارگیری مدل هلدرن برای تبیین بیشتر مسئله نشان می دهد که گسترش شهر پیرانشهر بیشتر ناشی از افزایش جمعیت (997/0-) این شهر بوده تا الگوی تراکم شهری؛ به طوری که با وجود ظهور سکونتگاه های غیررسمی در حواشی شهر و ادغام روستای شین آباد، شهر رشد اسپرال را تجربه نکرده است.
کلید واژگان: بازارچه مرزی تمرچین، رگرسیون لجستیک، روستای شینآباد، شهر پیرانشهر، گسترش فیزیکیThe effect of Tamarchin frontier market on physical development of Piranshahr over 2006-2014IntroductionCommon frontier markets are considered as the major factors that transform frontier cities and are booming the economy of these regions. Therefore, frontier markets play an essential role in developing the economy, promoting peace and stability, increasing security, and improving infrastructure and services in these regions. Activation of these markets leads to greater economic growth for frontier cities, i.e. a trend that results in economic development and urban growth. There is no doubt that development of economic activities leads to an increase in employment and to a large extent causes population and urbanization growth. On the other hand, there is a direct correlation between increasing growth of urbanization and physical development of cities. In other words, indiscriminate and unsustainable development of cities leads to growth of suburbs, destruction of urban green areas, and rising demand for urban land. Therefore, it can be stated that the economy of a city is an effective factor in growth of urban lands and physical development.Activation of Tamarchin frontier market resulted in a fundamental change in the economy of Piranshahr. And employment and the revenues from Tamarchin boundary and domestic market transformed the economy of the town. Therefore, in recent years high level of employment in Piranshahr has made it one of the population absorbers in the area, a fact indicated by population changes. Due to increasing need of the immigrants to accommodation and shelter and disorganized constructions along with real estate activities, urban development has been pushed toward Northeast, East, South, and Southeast where there is no physical development limit. This physical development has swallowed up the agricultural lands and "Shin Abad" village has been affected by this development and integrated into the town. On the other hand, due to this physical development of the town toward flat and fertile plains, land cover has been changed and agricultural lands have been destroyed.In this regard, the present study is aimed at investigating the effect of Tamarchin frontier market growth on immigration to Piranshahr and its physical development whereby the main hypothesis of the study – development of Tamarching frontier market has caused immigration to Piranshahr and its physical development to increase – can be answered.MethodIn terms the aim, the present study is an applied one and in terms of the method and nature it is descriptive-analytical. According to the title of the study, required data have been collected through library and documentation procedures, survey techniques, and satellite images and were analyzed through bi-variate logistic regression and Holden models and SPSS. The procedures are as follow:Survey techniques are utilized in order to evaluate opinion of Piranshahr residents on the effect of Tamarchin frontier market on physical development of the town. The sample size has been determined through Cochran formula to be 384 individuals. Collected data have been analyzed through bi-variate logistic regression and Holdern models using SPSS. Moreover, in order to identify the pattern of physical development of the town, periodical land cover maps retrieved from Landsat satellite, satellite images of ETM+TM (2006 and 2014) were analyzed using IDRISI software. In addition, Holdern model has been used in order to explain the issue more and identify this issue that development of Piranshahr has been due to population increase or its density pattern.DiscussionDiscussion of the study findings begins with a short review of population changes of Piranshahr and the performance of Tamarchin frontier market so that an overview of the market is achieved. Then, in order to determine the effects of the development of Tamarchin frontier market on population absorption of the town, collected data retrieved from Piranshahr residents have been utilized to see whether the market development has affected the population absorption and physical development of the town or not. In so doing, bi-variate logistic regression model in SPSS has been applied.In the next phase, the pattern of physical development of the town has been identified through satellite images and Holdern urban development model. This model has also been utilized to determine the proportion of the town development and its population.ConclusionBy developing the economy of frontier cities, frontier markets create a high level of employment in these regions, which results in a large population to be absorbed in order to find appropriate jobs and gain higher income. It is vivid that as population absorption increases, demand for urban land rises. Therefore, increasing growth of urbanization is directly correlated with physical development of cities. In other words, indiscriminate and unsustainable development of cities leads to growth of suburbs, encroachment on the lands around the city, destruction of urban green areas, and rising demand for urban land. Therefore, it can be stated that the economy of a city and its growth are effective factors in land and physical development of the city.In this regard, the present study is aimed at investigating the effect of Tamarchin frontier market growth on immigration to Piranshahr and its physical development. The results of integrating data collected from surveying and logistic regression model in SPSS have presented important information on the pattern and trend of land cover change and proved the fact that Tamarchin frontier market and the resulted economic growth in recent years have created a high level of employment which is an essential factor in immigration to Piranshahr and in fact "its physical development". This rapid urban development has cause Shin Abad village to get integrated in Piranshahr. Moreover, the results gained from Holdern model, further explaining the issue, have indicated that development of Piranshahr is mostly caused by population increase (- 0.997) rather than by the patterns of urban development. Although Shin Abad has integrated into Piranshahr and 190 Acres has been added to the town during 2005-2014, 118 Acres of this area (62% of the total area added to the town) have been unofficial settlement. However, the town's development has not been comprehensive and the town has not experienced spiral development.Keywords: Physical Development, Tamarchin Border Market, Piranshahr city.
Keywords: Tamarchin Border Market, physical development, Piranshahr City, ShinAbad, Logistic regression -
شناسایی مناطق حساس و تهیه نقشه پهنه بندی خطر زمین لغزش، گام مهمی در مسیر پیشگیری و کاهش خسارت های ناشی از وقوع این پدیده است. حوضه هشتجین با داشتن چهره کوهستانی و با توجه به وضعیت زمین شناسی، لیتولوژی، اقلیمی و انسانی، شرایط لازم را برای شکل گیری حرکات لغزشی دارد؛ بنابراین هدف نوشتار پیش رو پهنه بندی خطر زمین لغزش در این منطقه است. در پژوهش حاضر حساسیت زمین لغزش برای حوضه آبریز هشتجین با توجه به ارزیابی کارایی نتایج حاصل از دو مدل رگرسیون لجستیک و آنفیس برای دستیابی به هدف پژوهش، تجزیه و تحلیل شد. با استفاده از تفسیر عکس های هوایی و بازدید میدانی، مناطق شاهد به عنوان متغیر وابسته، با جی.پی.اس ثبت و درادامه عوامل موثر بر ایجاد زمین لغزش در منطقه شامل شیب، جهت، خطوط ارتفاعی، فاصله از آبراهه، فاصله از گسل، فاصله از جاده، زمین شناسی، کاربری اراضی و بارش با توجه به مرور منابع مختلف، مطالعات میدانی و مشورت با کارشناسان شناسایی شد؛ سپس در محیط آرک جی.آی.اس لایه ها به مثابه متغیر مستقل تهیه و با ورود لایه های مذکور به محیط نرم افزار ترست، متلب به ترتیب مدل رگرسیون لجستیک و آنفیس اجرا شدند. نقشه نهایی خطر زمین لغزش منطقه در پنج کلاس خطرپذیری تهیه شد. در پژوهش حاضر از 25% نمونه های شاهد به عنوان داده های آزمون، به منظور سنجش میزان صحت مدل های مورد بررسی، استفاده شد. نتایج صحت سنجی کارایی مدل های پیش گفته با اجرای منحنی راک نشان داد که دقت مدل آنفیس و رگرسیون لجستیک به ترتیب برابر 23/88% و 45/86% بوده است. نتایج بر اساس مدل انفیس بیانگر آن است که حدود 4854 هکتار، معادل 6/20% از منطقه هشتجین از نظر مخاطره زمین لغزش در کلاسه زیاد و خیلی زیاد قرار دارند.
کلید واژگان: رگرسیون لجستیک، زمین لغزش، انفیس، منحنی راک، هشتجینLandslides are one of the most important environmental processes, especially in mountainous landscapes. Identifying sensitive areas and preparing a landslide risk zoning map is an important step in preventing and reducing the damage caused by this phenomenon. Hashtjin basin, with its mountainous face and considering the geological, lithological, climatic and human conditions, has the necessary conditions for the formation of landslides; therefore, the current study aims at landslide risk zoning in the given area. Therefore, landslide sensitivity analysis for Hashtjin watershed is evaluated according to the efficiency of the results obtained from two models of logistic regression and Anfis to achieve the research goal. Using the interpretation of aerial photographs and field visits, control areas, as a dependent variable, were recorded by GPS. Then, the factors affecting landslides in the area including slope, direction, elevation lines, distance from waterway, distance from fault, distance from road, geology, land use and rainfall were identified according to various sources, field studies and consultation with experts; Then, layers were prepared as independent variables in GIS Arc environment. Moreover, logistic and ANFIS regression models were implemented by entering the aforesaid layers into TERRSET and MATLAB software environment, respectively. The final landslide hazard map of the area was prepared in 5 hazard classes. In this study, 25% of the control samples were used as test data to measure the accuracy of the studied models. The results of validation of the performance of the mentioned models by performing the ROC curve showed that the accuracy of Anfis model and logistic regression were equal to 88.23 and 86.45%, respectively. The findings from Enfis model reveal that approximately 4854 hectares, equivalent to 20.6% of the Hashtjin area are in high and very high class in terms of landslide risk.
Keywords: Logistic regression, Landslide, ANFIS, Roc curve, hashtjin -
رودشکن ها از لندفرم های پرشیب رودخانه ای هستند که در تحول سیستم های رودخانه ای اهمیت دارند. این پژوهش با هدف شناسایی عوامل موثر بر ایجاد رودشکن و تعیین مناطق مستعد ایجاد رودشکن در حوضه قلعه شاهرخ با استفاده از روش رگرسیون لجستیک باینری انجام شده است. بدین منظور عوامل موثر بر ایجاد رودشکن انتخاب شدند و سپس ارتباط آنها با پراکنش رودشکن ها بررسی شد؛ در ادامه متغیرهای تاثیرگذار و میزان تاثیر آنها بر رودشکن تعیین و مدل پیش بینی با رگرسیون لجستیک روی این متغیرها انجام شد. نتایج آزمون درست نمایی در مدل ارایه شده نشان می دهد زمین شناسی و فاصله از مرزهای سازندهای زمین شناسی در مدل معنادارند. تحلیل نتایج نشان می دهد با کاهش مقدار در شاخص های بریدگی و سطوح هم پایه، فاصله از مرزهای سازندهای زمین شناسی و با افزایش برش عمودی احتمال وجود رودشکن افزایش می یابد. درباره سایر عوامل استفاده شده، رابطه ای دیده نشد. دقت 87درصدی داده های آزمون در نمودار راک بیان کننده دقت زیاد مدل در تشخیص درست نقاط رودشکن در حوضه قلعه شاهرخ است. نتیجه شاخص یودن برای داده های آزمون 66/0 است که ارایه اطلاعات درست از وضعیت احتمال نقاط رودشکن به ویژه برای داده های آزمون مدل را نشان می دهد. نتیجه ضریب توافق کاپا برای داده های آزمون 60/0 است که تطابق و توافق هر دو روش را با مقادیر مشاهداتی نقاط رودشکن نشان می دهد. براساس نتایج این پژوهش، سازندهای زمین شناسی و توپوگرافی در رخداد رودشکن ها در منطقه مطالعه شده نقش مهمی دارند و رگرسیون لجستیک نیز، مدل مناسبی برای پیش بینی وقوع رودشکن است.
کلید واژگان: حوضه قلعه شاهرخ، رگرسیون لجستیک، رودشکن، مدل سازی احتمالاتیIntroductionRivers react to subsidence at their baseline by cutting and digging topographic features. The development of an upstream incision is often accompanied by a steep fracture called a river break (Loget & Van Den Driessche, 2009). The presence of river breaks in a geographical landscape is an indication of a steady-state in river systems. Therefore, the presence of knickpoints shows the system instability. The study of knickpoints can be used in the field of studies related to the evolution of valleys, identification of tectonic active areas and rock outcrops, river surface changes, erosion and sedimentation, and geomorphological changes in river systems. The basin studied in this study is located in the Qaleh Shahrokh-Chelgard area in the northeastern part of Chaharmahal and Bakhtiari province, Iran. The reason for selecting this basin is the extensive activities of the Zagros fault along the northwest-southeast and the existence of a hydrographic network affected by the trend of faults and the potential for knickpoints.
MethodologyIn this study, the locations of knickpoints were detected from the Radiometrically Terrain-Corrected (RTC) model which is extracted from the active microwave sensor ALOS PALSAR with a spatial resolution of 12 meters (Logan et al., 2014) as input data to the MATLAB executive toolbox called Tec DEM. Tec DEM is an executable toolbox in MATLAB software and uses a Digital Elevation Model (DEM) as input for morphotectonics in the basin. Tec DEM tool can be used in a variety of fields in the analysis of surface anomalies, drainage network and surface dynamics of basins, production of base maps, incisions (local roughness), vertical dissection and drainage density of basins and sub-basins, determination of turning points or knickpoints, hypsometric analysis and slope and concavity index of canal profiles (Shahzad & Gloaguen, 2011). The determination of knickpoints according to the shape of the longitudinal profile of the river is done semi-automatically. In this study, these points in the study areas were investigated according to field observations. In this study, geological variables and geomorphic variables related to knickpoints were used to identify the knickpoints. Information layers including geology, distance from the fault, distance from the boundary of geological formations, surface roughness index, fractal dimension, base surfaces, local roughness, and the vertical dissection as predictor variables and the layers of knickpoints as the prediction variables were used for modeling. For geological and tectonic studies of the region, geological maps of 100,000 sheets of Chadegan and Fereydunshahr and 250,000 sheets of Shahrekord were used. A total of 8 raster layers were used to analyze and predict the possibility of the presence of a knickpoint in the study area. Since 8 layers have different units and are not suitable as direct input for logistic regression, the input parameters were normalized in the range of 0 to 1. Nominal layers, such as geological data, became sequential variables between 0 and 1. All of these layers were then re-sampled as a network format with a cell size of 195*195 m using the nearest neighbor method, to allow all layers to be combined. Then, a matrix of square cell structure was prepared for the study area. It consisted of a matrix of 273 rows and 273 columns representing a total of 39,650 cells. Of these, 74 cells were identified as knickpoint points. These areas were identified with code 1 (presence of knickpoint) and the rest of the cells that did not have knickpoints were recorded with code 0 (absence of knickpoint).
DiscussionThe probabilistic relationship of the presence of a knickpoint as one of the important results of the research was obtained by the logistic regression method. This relationship predicted the probability of the presence of knickpoints based on geological and geomorphic variables. The probability map of the knickpoints in the study area was obtained based on the statistical relationship. According to the results, there is a possibility of river knickpoints in the southwestern regions and parts of the northeastern Basin. The results of the probability ratio test to determine the statistical significance of each of the independent variables in the proposed model showed that the geology and the distance from the boundaries of the geological formations in the model were significant. The results of the Yuden index for the training dataset, validation, and test data were equal to 0.72, 0.76, and 0.66, respectively, which indicated the accurate information on the probability status of knickpoint points, especially for the test data of the model. The results of the Kappa agreement coefficient for training, validation, and test data were also equal to 0.62, 0.73, and 0.60, respectively, which indicated the agreement of both methods with the observed values of knickpoints.
ConclusionThe results of this study showed that at the boundary of lithology, because of the presence of joints and cracks due to differences in the type of rocks, the probability of the presence of river break was more than other parts of the region. Although the presence of some relatively high slope knickpoints indicated active tectonics in that area, in the present study, the effect of the fault system or active tectonics in the formation of knickpoints was not statistically significant. Particularly, the reduction of local roughness index and baselines was associated with less tectonic activity, but in this study, the appearance of knickpoints has been associated with a decrease in these two factors.
Keywords: Ghaleh Shahrokh Basin, Logistic Regression, Knickpoint, Probabilistic Modeling -
توجه به آثار زیست محیطی در تولید محصولات کشاورزی می تواند درراستای مدیریت پایدار کشاورزی بسیار مفید باشد. شناخت رفتارهای زیستی در تولید آلاینده ها می تواند نقش مهمی در کاهش اثرات سوء آلودگی هوا داشته باشد. روش رگرسیون لجستیک به عنوان روش توسعه یافته خطی، به منظور پیش بینی آلودگی هوا به شمار می رود؛ تحلیل سری زمانی پارامترهای اثرگذار بر آلاینده های هوا و پرداختن به این موضوع که برای پیش بینی میزان آلاینده ها در یک گام زمانی جلوتر، به چه تعداد داده در زمان های قبلی نیاز است، مسئله ای است که کمتر بررسی شده است. هدف پژوهش حاضر آن است که با مدل سازی فرایند پنج آلاینده مهم شامل مونوکسید کربن، ازون، ذرات معلق با قطر کمتر از ده میکرومتر، دی اکسید گوگرد و دی اکسید نیتروژن در استان مازندران با استفاده از روش رگرسیون لجستیک و تحلیل سری های زمانی، میزان کارایی و انعطاف پذیری روش های به کار گرفته شده در مدل سازی و پیش بینی این آلاینده ها را بررسی کند. در نوشتار پیش رو، داده های هواشناسی از ایستگاه های رامسر، آمل، بابلسر و نوشهر و داده های آلودگی هوا از ایستگاه های گلوگاه، قائم شهر، ساری و کیاسر به صورت روزانه در نیمسال دوم 1396 و سال 1397 دریافت شده که میانگین آن ها در تجزیه و تحلیل داده ها استفاده شده است. نتایج نشان داد که NO2 و CO ایستگاه گلوگاه و O3 ایستگاه کیاسر و SO2، NO2 و CO ایستگاه های آلودگی ساری و قائم شهر به طور کامل با پارامترهای دما، رطوبت نسبی و سرعت باد ارتباط معنی داری دارند که بیانگر تاثیر این پارامترها در تغییر غلظت آلاینده های پیش گفته است؛ همچنین براساس الگوهای توابع یک متغیره معادلات رگرسیون ها، فرمول های معتبری برای تخمین روابط لجستیک بین آلاینده ها و پارامترهای هواشناسی استخراج شد که براساس آن، با داشتن پارامترهای هواشناسی در ایستگاه ها، به راحتی می توان میزان آلودگی منطقه را پیش بینی کرد.
کلید واژگان: آثار زیست محیطی، آلودگی هوا، رگرسیون لجستیک، مدیریت پایدار کشاورزی، پیش بینی آلاینده هاPaying attention to environmental effects on the production of agricultural yields can be very useful in the direction of sustainable agricultural management. Understanding biological behaviors in the production of pollutants can play an important role in reducing the adverse effects of air pollution. Logistic regression method is considered as a linear developed method to predict air pollution; Time series analysis of parameters affecting air pollutants and addressing how much data is needed in previous times to predict the amount of pollutants one step ahead is an issue that has been less studied. The current study aims to model the process of five important pollutants including carbon monoxide (CO), ozone (O3), particulate matter less than 10 μm in diameter (PM10), sulfur dioxide (SO2) and nitrogen dioxide (NO2) in Mazandaran province, using logistic regression method and time series analysis, to examine the efficiency and flexibility of the methods used in modeling and forecasting these pollutants. In this study, meteorological data from Ramsar, Amol, Babolsar and Nowshahr stations and air pollution data from Gulogah, Ghaemshahr, Sari and Kiasar stations were received daily in the second half of 2017 and 2018, the average of which has been used in data analysis. The findings reveal that NO2 and CO of Gulogah station and O3 of Kiasar station and SO2, NO2 and CO of Sari and Ghaemshahr pollution stations are completely related to the parameters of temperature, relative humidity and wind speed, which indicates the effect of these parameters on changing the concentration of these pollutants. Moreover, based on the patterns of univariate functions of regression equations, valid formulas for estimating logistic relationships between pollutants and meteorological parameters were extracted, according to which, having meteorological parameters in stations, it is easy to predict the pollution of the region.
IntroductionPressure on the environment for human activities is important not only environmentally but also economically. In Iran, due to the abundance of energy resources, there is waste and extravagance in their use for economic activities, which leads to an increase in environmental pollution. The current study aims to predict five important pollutants including carbon monoxide (CO), ozone (O3), particulate matter (PM10), sulfur dioxide (SO2) and nitrogen dioxide (NO2). In fact, this study is going to investigate the process of pollutants using logistic regression method and time series analysis to examine the efficiency and flexibility of these methods in modeling.
Materials and MethodsStudied air pollution measuring stations in this work include Gulogah, Ghaemshahr, Sari and Kiasar stations. Data from Ramsar, Amol, Babolsar and Nowshahr meteorological stations were also used. Meteorological data from synoptic stations and air pollution data from monitoring stations of the Environmental Protection Organization were received daily in the second half of 1396 and 1397, the average of which was used in data analysis. In statistical analysis, the correlation between the parameters was calculated and the correlation relationships were presented. In this study, logistic regression method was used.
Results and DiscussionWith the obtained values for special vectors suitable for each component, a suitable drawing of the relationship between meteorological parameters and air pollutants is created. The results showed that increasing each parameter has an increasing effect on the output, while decreasing each has a decreasing effect on it. A closer look reveals that the O3 pollutant is directly related to the temperature parameter and inversely related to humidity. Moreover, the findings from the test phase as well as the prediction error in the network test phase and the correlation between the actual data and the predicted data indicate that the coefficient of determination R2 between the actual data and the predicted data is equal to 0.62. The relationship between the actual values of O3 and the error obtained from the network test reveal that there is no systematic relationship between the values of O3 and the error and there are different errors for different values of O3. Performing logistic regression and examining the accuracy obtained from them to predict the other four pollutants, it was concluded that there is no systematic relationship between the values of these pollutants and the error and their different values have different errors. Based on this, the error value for these pollutants in the range of 0.4-0 can be assumed to be approximately in a range from 0.07 to 0.1. Besides, studies show that there is a significant relationship between O3 and temperature in Amol meteorological station and Ghaemshahr pollution station. Furthermore, the correlation between meteorological parameters and pollutants in Ramsar meteorological stations and Kiasar pollution shows a significant relationship between SO2 and wind speed, while it indicates a significant relationship between O3 and temperature for Babolsar meteorological stations and Sari pollution. Moreover, correlation study for Nowshahr meteorological stations and throat pollution show a significant relationship between SO2 content and temperature.Based on the correlation results, there is a positive and significant relationship between O3 and temperature in Amol meteorological stations and Ghaemshahr pollution, as well as Babolsar meteorological stations and Sari pollution. Besides, the study of the correlation between meteorological parameters and pollutants in Ramsar meteorological stations and Kiasar pollution proves a negative and significant relationship between NO2 and temperature, and for Nowshahr meteorological stations and bottleneck pollution, shows a significant negative relationship between SO2 and temperature. Therefore, the results clearly indicate that temperature is the most effective factor in the process of creating pollutants in Mazandaran province. This result is consistent with the results of Khorshiddoost et al. (2015) which investigated the relationship between atmospheric parameters and air pollution in Tabriz. However, it contradicts the results of Mahneh (2015) Taste and Kakhki study, which examined the relationship between climate elements and air pollution fluctuations in Mashhad, in which relative humidity was identified as the most influential factor on CO and SO2 pollutants; On the other hand, it is noteworthy that at different stations, different elements have a significant relationship with temperature; This difference in the performance of spatial models for different stations has been confirmed in other studies.
ConclusionAccording to the findings from the studied stations, it can be said that NO2 and CO of Gulogah station and O3 of Kiasar station and SO2, NO2 and CO of Sari and Ghaemshahr pollution stations completely indicate a significant relationship among the parameters of temperature, relative humidity and wind speed. The effect of these parameters is to change the concentration of these pollutants. Given the uniformity of changes in station data, it can be inferred that the resulting changes follow general patterns; thus, the stations that have a higher correlation coefficient have closer and more similar patterns and the stations that have a lower correlation coefficient will have unique and special patterns for the same station. Performing logistic regression and examining the accuracy obtained from them to predict pollutants, it was concluded that there is no systematic relationship between the values of these pollutants and the error and their different values have different errors. Finally, based on the purpose of this study, valid formulas to estimate logistic relationships between pollutants have been extracted in order to investigate the efficiency and flexibility of these methods in modeling the pollutant process using logistic regression and time series analysis, based on univariate models of regression equations of models. According to these equations, it is easy to predict the level of pollution in each region by having the meteorological parameters in the stations.
Keywords: Environmental effects, Air Pollution, Logistic regression, Sustainable agricultural management, pollutant forecasting -
پژوهش حاضر با هدف پایش روند بیابان زایی در محدوده پیرامونی دریاچه ارومیه در بازه زمانی 2000 تا 2018 میلادی انجام شده است. برای رسیدن به این هدف، نخست هفت فریم از تصاویر سنتینل-2 مربوط به سال 2018 و سه فریم از تصاویر ماهواره لندست 5 مربوط به سال 2000 میلادی با استفاده از نرم افزار QGIS و ENVI 5.3 پیش پردازش و پردازش، و شاخص های معرف بیابان زایی در قالب زوج شاخص های طیفی آلبدو - شاخص پوشش گیاهی تفاضلی نرمال شده، میزان سبزینگی- ضریب روشنایی و میزان رطوبت- ضریب روشنایی استخراج شد. در مرحله بعد روابط آماری موجود بین زوج شاخص های یادشده بررسی شد. براساس نتایج حاصل، زوج شاخص های میزان سبزینگی- ضریب روشنایی و میزان رطوبت- ضریب روشنایی، با کسب همبستگی منفی به مثابه زوج شاخص های معرف بیابان زایی انتخاب و نقشه شدت خطر بیابان زایی برمبنای آنها تهیه شد. برای صحت سنجی نتایج به دست آمده، الگوریتم بیشترین درجه شباهت به کار رفت. الگوریتم یادشده با کسب درجه صحت 96/91 و ضریب کاپای 95/0 برای سال 2000 میلادی، درجه صحت 25/91 و ضریب کاپای 89/0 در سال 2018 نشان دهنده انطباق مناسب نتایج کسب شده با واقعیت های زمینی است. برای پایش روند وقوع پدیده بیابان زایی، تغییر مساحت کلاس های خطر بیابان زایی در محدوده مطالعه شده بررسی شد. براساس نتایج به دست آمده، مساحت کلاس های خطر شدید (01/5 درصد)، نسبتا شدید (47/11 درصد) و متوسط (12/6 درصد) رشد مثبت و مساحت کلاس های خطر ضعیف (17/9 درصد) و بدون بیابان زایی (43/13 درصد) رشد منفی دارد؛ بنابراین روند افزایشی درصد مساحت کلاس های خطر شدید، نسبتا شدید، متوسط و کاهش مساحت کلاس های خطر ضعیف و بدون خطر بیابان زایی نشان دهنده روند صعودی وقوع بیابان زایی در محدوده مطالعه شده است. معیار آب زیرزمینی، اقلیم و درصد پوشش گیاهی، مهم ترین عوامل موثر در وقوع بیابان زایی در محدوده مطالعه شده است.
کلید واژگان: پایش بیابان زایی، دریاچه ارومیه، سنتینل-2، لندست-5، الگوریتم بیشترین درجه شباهتIntroductionAccording to the First World Conference on Deserts and Desertification, desertification refers to the destruction and degradation of natural ecosystems in arid, semi-arid, and sub-humid arid regions, which results in lower biomass production and the emergence of soil erosion (Ekhtesasi et al., 2011). Desertification results from natural factors such as climate variables and anthropogenic activities (Binal et al, 2018; Claado et al, 2002) and its impact on ecological processes is enormous and complex. Therefore, counteracting desertification is necessary to maintain long-term soil fertility in arid areas of the world. The present study aimed at evaluating desertification trends in the areas surrounding Lake Urmia in the period from 2000 to 2018. The main objectives of this study were 1) identification of the most suitable spectral index pair of desertification in the study area during the study period, taking into account the statistical relations; 2) mapping the desertification risk for the study period and the assessment of desertification trend in the study area by using the spectral biophysical indices such as normalized difference vegetation index (NDVI), surface albedo, Tasseled cap along with three components of brightness, Wetness, and greenness, and 3) identifying the most important factor that caused desertification in the study area by using the logistic regression model.
MethodologyIn the present study, first, three frames of Landsat 5 TM sensor and seven frames of Sentinel 2 images were downloaded and analyzed by ENVI5.3 and QGIS software for July 2000 and 2018. In the next step, spectral indices of desertification, including the normalized difference vegetation index (NDVI), surface albedo, Tasseled Cap (including three components of brightness coefficient, Wetness, and greenness) were extracted for the study period. Thereafter, using the statistical relations and the determination coefficient, the most suitable spectral index pair of desertification in the study area was identified. After the identification of suitable spectral index pairs, the selected spectral index pair was normalized and the desertification mapping was performed for the years 2000 and 2018 taking into account the obtained gradient by using the linear regression relation. Finally, by applying the statistical change detection method, changes in the class's risk were investigated and using the Logistic Regression model, the most effective factor in the occurrence of desertification was identified.
Discussion :
The normalized difference vegetation index (NDVI), wetness, and greenness were considered as the independent variables and surface albedo and brightness coefficient as dependent variables. The pairs of NDVI-Albedo spectral indicators have a positive correlation, but two spectral index pairs of humidity-brightness coefficient and brightness coefficient-greenness due to having a negative correlation were selected as the desertification index pairs and then normalized in the next step through the relevant relations. After mapping the desertification risk according to the index pairs of brightness coefficient-greenness and humidity-brightness, the combined map of desertification was obtained using line slope from the normalized relationship of the selected index pair and overlay function for the years 2000 and 2018 in 5 classes of non-desertification, weak, moderate, severe, and relatively severe desertification risks. To verify the results, using the classification algorithm, the Maximum Likelihood Algorithm and the Error Matrix were obtained, and the algorithm, with the accuracy of 91.96 and the kappa coefficient of 0.95 for 2000, and accuracy of 91.25 and a kappa coefficient of 0.89 for 2018 indicated a good correlation between the obtained results and the real-world data.
ConclusionThe results of this study were as follows: A) The two spectral index pairs of humidity-brightness coefficient and brightness coefficient-greenness were selected as the most suitable desertification indices in the study area, and therefore, the desertification risk maps were obtained through using this spectral index pair, B) The classification algorithm showed the highest degree of similarity with the accuracy of 91.96 and the kappa coefficient of 0.95 for the maps of 2000, and accuracy of 91.25 and a kappa coefficient of 0.89 for the maps of 2018, which indicated a good correlation between the obtained results and the real-world data, C) According to the results of statistical change detection analysis method, the areas of severe, relatively severe, and moderate desertification risk classes were increasing from 2000 to 2018, D) The desertification risk maps of 2000 and 2018 showed that the lands on the eastern coast, and especially on the southeast of the Lake Urmia, and the areas at the marginal edge of Tabriz Plain, overlooking the Lake Urmia were more sensitive to the desertification risk, and showed more severe degradation, compared to those on the west coast of Lake Urmia, F) Indicators such as underground water electric conductivity, chlorine index of underground water, Sodium adsorption ratio, drought index, Percentage of vegetation, had a high impact on the occurrence of desertification.
Keywords: Desertification monitoring, Lake Urmia, ENVI 5.3, Logistic Regression, Maximum likelihood algorithm -
در این مطالعه از روش رگرسیون لجستیک برای تحلیل کمی و مقایسه ای ناپایداری ها در دامنه های مشرف بر جاده کرج- چالوس (حد فاصل کرج- گچسر) و اتوبان در حال احداث تهران- شمال (حد فاصل تهران- سولقان) استفاده شده است. جهت بررسی پتانسیل وقوع حرکات دامنه ای لایه های جداگانه 14 فاکتور موثر در وقوع ناپایداری ها (شامل طبقات ارتفاعی، شیب، جهت شیب، زمین شناسی، کاربری اراضی، بارش، فاصله از گسل، فاصله از رودخانه، فاصله از جاده، پوشش گیاهی، اقلیم، طول شیب، شاخص قدرت آبراهه ای و شاخص رطوبت توپوگرافیک) در محیط GIS تهیه شدند، سپس با لایه پراکنش ناپایداری های موجود انطباق داده شدند و تراکم آن ها در واحد سطح محاسبه شد. در ادامه با استفاده از نرم افزار Terrset مدل رگرسیون لجستیک انجام شد. در نهایت می توان گفت مدل آماری رگرسیون لجستیک مدلی مناسب جهت پهنه بندی احتمال وقوع ناپایداری ها در منطقه مورد مطالعه در کنار خطوط ارتباطی است. به عنوان نتیجه گیری نهایی می توان گفت علاوه بر عوامل طبیعی، عوامل انسانی خصوصا جاده سازی غیراصولی می توانند نقش مهمی در وقوع ناپایداری های دامنه های مشرف بر جاده داشته باشند. برای کاهش نسبی خطرات و افزایش میزان پایداری دامنه ها لازم است تا حد ممکن از تغییر اکوسیستم و کاربری اراضی اجتناب نمود، و همچنین هرگونه سیاست گذاری به منظور احداث سازه ها متناسب با شرایط ژیومورفولوژیکی و زمین شناسی منطقه صورت پذیرد.کلید واژگان: ناپایداری های دامنه ای، رگرسیون لجستیک، بزرگراه تهران-شمال، جاده کرج-چالوس، پهنه بندی خطرMass movements of the earth's surficial materials downward the slopes is called slope instability, which is affected by the earth gravity, while the rate of material mobility increases by the presence of water in the sediments. Each year, slope instabilities cause enormous economic damages to roads, railways, power transmission and communication lines, irrigation and watering canals, ore extraction, as well as oil and gas refining installations, infrastructures in cities, factories and industrial centers, dams, artificial and natural lakes, forests, pastures and natural resources, farms, residential areas and villages or threaten them. Nowadays, many instabilities are resulted by human intervention and manipulations. One of the effective human factors in instability occurrence is the construction of roads. Road construction, especially in mountainous areas, increases the probability of occurrence of various types of instabilities, as it changes the natural balance of the slopes and causes deformations in the land. Each year, lots of casualties and financial losses are imposed by the occurrence of various types of instabilities in the slopes overlooking the roads, which also cause the destruction of many natural resources in the country. However, the construction of roads, highways and freeways is necessary and unavoidable in today’s life. The Karaj-Chaloos road and the Tehran-North highway are two routes that connect the Iran’s capital Tehran with the southern shores of the Caspian Sea, but suffer frequent slope instabilities.Keywords: Instability, Logistic Regression, Tehran-North highway, Karaj-Chaloos road, Risk zonation
-
انرژی نقش اساسی در تامین رفاه خانوارهای شهری و روستایی دارد و اصلاح الگوهای مصرف انرژی علاوه بر متعادل کننده های قیمت، مستلزم شناخت و اعمال متغیرهای فرهنگی و اجتماعی موثر بر الگوی مصرف و صرفه جویی است. با توجه به اهمیت صرفه جویی در مصرف برق و ارتباط آن با رفتار مصرف کنندگان، در پژوهش حاضر به بررسی تفاوت جوامع شهری و روستایی از نظر عوامل موثر بر صرفه جویی در مصرف انرژی برق پرداخته شد. تحقیق حاضر از نظر هدف، کاربردی و روش انجام آن توصیفی- تحلیلی است. ابزار گردآوری داده ها و اطلاعات پرسش نامه و مصاحبه با خانوارهای شهری و روستایی شهرستان پلدختر می باشد. جامعه آماری شامل خانوارهای شهری و روستایی در شهرستان پل دختر می باشد (30012N=). با استفاده از فرمول کوکران و به روش نمونه گیری تصادفی ساده، 379 خانوار (244 خانوار شهری و 135 خانوار روستایی) انتخاب گردید. در بخش تحلیل داده ها از آزمون های تحلیل واریانس و رگرسیون لجستیک استفاده شد. نتایج نشان داد که تفاوت قابل توجهی بین عوامل و شاخص های موثر بر صرفه جویی در مصرف برق در مناطق روستایی و شهری وجود دارد. صرفه جویی در مصرف برق در مناطق شهری در درجه اول تحت تاثیر عامل فردی و عامل مدیریت رفتار و خرید می باشد، درحالی که عامل موقعیتی مهم ترین عامل صرفه جویی در مصرف برق خانوارهای مناطق روستایی است.
کلید واژگان: صرفه جویی، مصرف انرژی برق، تفاوت شهر و روستا، رگرسیون لجستیک، شهرستان پلدخترEnergy plays a major role in providing welfare of urban and rural households, and reforming energy consumption patterns, in addition to price balancing, requires recognition and acts of cultural and social variables affecting the pattern of consumption and savings. Considering the importance of saving electricity and its relation with consumer behavior, in this study, the difference in urban and rural communities was investigated in terms of effective factors on energy savings. The present research is descriptive-analytical in terms of purpose and method. The data-gathering tool and information collection and interviews with urban and rural households in Poledokhtar city. The statistical population includes urban and rural households in Poledokhtar Township (N= 30012). Using Cochran formula and simple random sampling method, 379 households (244 urban households and 135 rural households) were selected. In the data analysis section, analysis of variance and logistic regression tests were used. The results showed that there is a significant difference between the factors and indicators affecting power saving in rural and urban areas. The individual agent and the factor of behavior management and purchasing, while the factor is the most important factor in saving households in rural areas, primarily influence power saving in urban areas.
Keywords: Saving, Power Consumption, City, Village Difference, Logistic Regression, Poledokhtar Township -
رشد سریع شهرنشینی فشارهای سنگینی بر سرزمین و منابع اطراف آنها وارد کرد و موجب کاهش پوشش گیاهی، کاهش فضای باز و مشکلات جدی اجتماعی و زیست محیطی شده است. یک گام اساسی جهت مدیریت و برنامه ریزی توسعه شهری و هم چنین ارزیابی اثرات تجمعی آن بررسی و شبیه سازی توسعه فیزیکی شهر می باشد. یکی از فرآیندهایی که طی آن می توان تغییرات شهر را برای یک دوره زمانی چند ساله بررسی و در نتیجه جهت های رشد و توسعه شهری را برای اعمال برنامه ریزی های مناسب پیش بینی کرد، مدلسازی توسعه شهری است، بنابراین طراحان و برنامه ریزان شهری به اطلاعات مکانی و زمانی که مرتبط با الگوهای رشد شهری هستند نیازمندند تا بتوانند مدلسازی را انجام دهند. هدف پژوهش حاضر، مدلسازی توسعه شهری شهر بندرعباس با استفاده از مدل lcm در سری زمانی 21 سال (1994،2002،2009،2015) با استفاده از تصاویر ماهواره ای لندست است که در مرحله اول پس از طبقه بندی تصاویر به روش نظارت شده بیشترین شباهت، نقشه های کلاسه بندی شده را با دقت ضریب کاپا 9550/0 به دست آوردیم و سپس با استفاده از مدل تغییرات زمین به پیش بینی نقشه 2021 پرداختیم و با استفاده از مدل رگرسیون لجستیک و زنجیره Ca-markove توسعه شهرستان را در سال 2021 با دقت مناسب پیش بینی می کنیم. پس از محاسبه ماتریس احتمال انتقال تغییرات به پیش بینی کاربری اراضی در سال های 2009 و 2015 و 2021 با استفاده از رگرسیون لجستیک پرداختیم که در مقایسه با کاربری های اراضی سال های 2009 و 2015 به دقت ضریب کاپای 75.3 درصد برای سال 2009 و 86.9 درصد برای سال 2015 رسیدیم که براین اساس نتایج نسبتا خوبی به دست آورده ایم.کلید واژگان: مدلسازی شهری، رگرسیون لجستیک، شهر بندر عباس، گسترش فیزیکیRapid urbanization has put heavy pressure on the land and it is surrounding resources, reducing vegetation, reducing open space and serious social and environmental problems. An important step in managing and planning urban development, as well as assessing its cumulative effects, is to study and simulate the physical development of the city. One of the processes in which a city changes can be investigated for a multi- year period and therefore predicting the directions of urban development for appropriate planning is urban development modeling, so urban designers and planners have spatial information and when they are related to urban growth patterns, they need to do the modeling. The aim of the present study is to model the urban development of Bandar Abbas city using the LCM model in the 21st year series ( 1994, 2002, 2009, 2015) using the Landsat satellite images. In the first step, after classification of images by supervised method, mostly we compared the maps with the accuracy of the KAPPA coefficient of 0.9550, and then using the land- change model to predict the map of 2021 and using the Logistic regression model and the CA-Markov chain, the development of the city in 2021 was anticipated exactly. After calculating the matrix, the probability of transfer of changes to predict land use in 2009, 2015, and 2021 was calculated using Logistic regression, which compared to land use in the years 2009 and 2015, the accuracy of the Kappa coefficient was 75.3% for 2009 and 86.9%. Also for the year 2015 we achieved relatively good results.Keywords: urban modeling, Logistic regression, Bandar Abbas, LCM, Detection of changes
-
بررسی عوامل موثر بر ریزش سنگی و پهنه بندی خطر آن با رگرسیون لجستیک در حوضه آبریز علی آباد چای هوراند
ناپایداری دامنه های طبیعی یکی از پدیده های زمینشناسی و ریختشناسی است که در تغییر شکل سطح زمین نقش موثری دارد و زمانی که فعالیتهای انسانی را تحت تاثیر قرار دهد، میتواند به پدیده ای خطرناک تبدیل شود؛ لذا مطالعه ی حرکات توده ای حوضه ی آبریز علی آباد هوراند در این تحقیق مورد عمل قرار گرفت. داده های مورد استفاده شامل نقشه های توپوگرافی 1:50000 و زمین شناسی 1:100000 و لایه ی Dem 30 متر و تصویر ماهواره ای لندست8 سنجنده Oli است و از ابزارهای رایانه ای Arc Map10.1 و SPSS16 بهره گرفته شد. مراحل تحقیق بدین شرح می باشدکه ابتدا 9 متغیر مستقل موثر بر ریزش توسط متخصصین امر وزن دهی شد و با پیمایش منطقه نیز ریزش های سنگی که 90 مورد مشاهده گردید, ثبت شده و تبدیل به لایه ی ریزش سنگی به عنوان متغیر وابسته شد. با تحلیل رگرسیونی تاثیر متغیرهای مستقل با وزن های داده شده بر متغیر وابسته مورد آزمون قرار گرفته و بعد از تایید تاثیر متغیرهای مستقل بر متغیر وابسته, پهنه بندی خطر ریزش سنگی تهیه شد و دوباره با ریزش های ثبت شده از حوضه همپوشانی گردید و نتایج نشان داد که 3/33 درصد از ریزش های سنگی در محدوده خطر خیلی زیاد, 7/27درصد در محدوه خطر زیاد, 7/27درصد در محدوده خطر متوسط و 7/7 درصد در محدوده خطر کم و 3/3 درصد در محدوده خطر خیلی کم اتفاق افتاده است.
کلید واژگان: پهنه بندی، حرکات توده ای، ریزش سنگیIntroductionInstability of natural slopes is one of the geological and morphological phenomena that has a significant role in changing the form of surface of the earth, and when it affects human activities, it can become a dangerous phenomenon (Esfandiari, 2006: 113). Landslides as geological events related to the transportation of soil / heavy rock materials and assessment of its sensitivity, is an important task for local authorities to plan and reduce the land (Xialong Deng, 2017: 2). Therefore, many attempts have been made to assess the dangers of mass movements, and it is suggested to have its reduction methods based on the key characteristics of the slip, including scope and extent, volume, startup mechanism and recurrence, and subsequently, make decisions (Kuo Jeong Chank et al., 2018: 700). (Hemati and Hejazi 2017: 24-7) evaluated the landslide hazard zonation of Lavasanat watershed using logistic regression statistical methods and the result was stated in this way that in the studied area, areas with high risk of zoning, had a large share of the area amount of the region. Aliabad basin with the southwest - northeast trend in the geographical coordinates of - located in the east and - located in the north latitudes of the northeast of East Azarbaijan Province and southeastern part of Horand County.(Figure1) Figure (1): Geographic location of Aliabad watershed
MethodologyTopographic map (1: 50000) and geological map of Kaleybar region (1: 100000). 2- Landsat satellite images of 8 OLI sensors 3- GPS devices 4- Maps of the faults, slopes, isohyet, isotherm, evaporation, land use, elevation and hydrology 5- Envi 5.3 software 6- Statistical software of SPSS, version 16. For zoning the risk of rock falls, nine layers of information including slope, hypsometry of the region, isohyet, isotherm, evaporation, distance from the fault, distance from the river, land use and lithology were used as independent variables and to prepare the layers in Arc GIS, 1,500,000 topographies and 1.100000 geology maps were utilized, and Landsat 8 satellite imageries were used with the OLI sensor to produce the land use layer. So, after preparing the considered data, the layers were classified as raster, and in their descriptive table, a column called the standard weight was added and the classes related to each layer were calculated using a sum ranking method. In this research, the rock fall layer was considered as the dependent variable and the 9 presented layers were considered as independent variables and all layers had been evaluated in the normalization of the weight between zero and one per pixel; based on the proportion table method, each layer, having 500 weighted pixels that overall included 5000 pixels, was entered into the SPSS environment and regression analysis was performed thereof. Independent variables, including 9 variables, consisting of three PhDs in geomorphology and two Phd in geology were selected based on exports opinions considering their importance in creating and strengthening the dependent variable were weighted between zero and one numbers.
Results and DiscussionThe Chi square test for each of the independent variables, separately, showed that there was a significant relationship between the independent variables and the dependent variable, and the effects of these variables on the dependent variable was acceptable. The numerical value of R was 0.953, and if the R value was closer to one, it would indicate the high validity of the test. The numerical value of the coefficient of determination of the independent variables relative to the dependent variable was 0.909, which indicated the high validity of the significance of the test, because it was closer to number one. Of course, it is clear that the value of the determination coefficient in Pseudo R Square was determined to be good, so the adjusted coefficient of determination was considered whose numerical value was 0.907. These findings indicated that roughly 90 percent of rock falls occurred in the Aliabad basin have been affected by these 9 estimated independent variables. Given that the statistical analyzes confirmed the validity of the effects of independent variables on the dependent variable according to the weightings of the experts in terms of zero and one for each variable as well as the importance of the variables in relation to each other as a binary comparison, the zoning of the risk of rock fall for the Aliabad watershed of the Horand basin was done using Arc Gis software, and in this zonation, five falling risk classes were used including very high, high, medium, low and very low .
Conclusionlithology and the distance from the fault and river and foot slopes were the most important factors in the formation of rock falls since the drainage system of the basin exactly followed the fault zone. The reason for this issue can be analyzed in the way that the longitudinal distance of the highest parts of this region, from the basin to the Aliabad River was lower, which has caused the slope of the basin to perform deep slices to achieve a balance in the slopes and hydrology. The southern parts of the basin are considered as one of the most susceptible basins in the geomorphologic phenomenon of rock falls and destructive cones due to the existence of alluvial formations and the lack of proper slopes and the relative reduction of the fault to the northern and eastern parts despite having significant heights and very low and low status of zonation in the risk of rock falls, and in the southwestern part of the basin, a presence of rocky outcrops in the presence of permeable cones has been also observed. This issue should be addressed to the authorities in order to avoid serious damages to the lives of the inhabitants of the basin, so that the potential risks of this phenomenon could be controlled as much as possible including: threatening communication routes and threatening rural villages and damaging electrical and telecommunication facilities, therefore, infrastructure solutions should be applied in this regard.
Keywords: Landslide, Rock fall, Logistic Regression, Ali Abad basin -
پیش بینی تعداد افراد مراجعه کننده به بیمارستان ها در ارتباط با پارامترهای اقلیمی از موضوعات قابل بحت و تامل است که با تغییرات اقلیمی و گسترش شهرنشینی و آلودگی هوا در دهه های اخیر دامن گیر بسیاری از جوامع بشری شده است. استفاده از مدل های پیش بینی می تواند بعنوان ابزاری کارآمد در مدیریت و کنترل بیماری ها، کاهش مرگ و میر و برنامه ریزی ها مورد توجه قرار گیرد که در این پژوهش دو مدل شبکه عصبی مصنوعی و رگرسیون لوجستیک (لاجیت) به عنوان ابزاری کارآمد در پیش بینی فرآیندهای غیرخطی و پیچیده جهت پیش بینی میزان مراجعه کنندگان بیماری آسم در شهر سنندج در ارتباط با پارامترهای اقلیمی مورد بررسی قرار گرفت. داده های مورد بررسی در بازه زمانی 8 ساله (2008-2001) از ایستگاه هواشناسی سینوپتیک سنندج و بیمارستان های توحید و بعثت در سطح شهر سنندج اخذ گردید. سپس، پارامترهای اقلیمی به عنوان ورودی و میزان مراجعه کنندگان بیماری آسم بعنوان خروجی مدل ها در نظر گرفته شدند. نتایج حاصل از بررسی نشان داد که مدل شبکه عصبی با ورود پارامترهای متوسط فشار QFE و میانگین های حداقل و حداکثر دمای ماهانه و همچنین میانگین دمای ماهانه با دقت قابل قبولی میزان مراجعه کنندگان بیماری آسم را پیش بینی می کند به طوری که ضریب همبستگی داده های واقعی و پیش بینی شده برابر با 99/0 است که در سطح 01/0 معنی دار هستند. پارامترهای ورودی در روش لاجیت نیز نشان می دهد که میزان مراجعه کنندگان بیماری آسم از پارامترهای میانگین حداقل دما، متوسط فشار QFF و متوسط سرعت باد (نات) تاثیر می پذیرند. نسبت لگاریتمی هر کدام از پارامترهای فوق بر روی تعداد مراجعه کننده به ترتیب با ضریب بتای 517/0-، 734/0- و 977/0- معنی دارند و از میان پارامترهای اقلیمی نیز عنصر باد به مراتب بیشتر از سایر پارامترها بر روی میزان تعداد افراد مراجعه کننده به بیمارستان تاثیر گذار است. در مجموع از بین دو مدل غیرخطی مورد بررسی، مدل شبکه عصبی مصنوعی، قابلیت و دقت بیشتری را نسبت به مدل لاجیت نشان داد.
کلید واژگان: آسم، اقلیم، شبکه عصبی مصنوعی، رگرسیون لوجستیک، سنندجIntroductionPrediction of hospital admissions related to climatic parameters is discussed matters that in recent decades in result from climate change, urbanization and air pollution has triggered widespread in many societies. Fluctuations in climatic parameters, in turn, can have a significant impact on mortality and mortality, and the use of predictive models can be used to identify fluctuations in climatic parameters affecting disease and their prevalence and planning and Compatibility with the environment to be effective.
MethodologyUsing of predictive models can be consider as an effective tool in managing and controlling the diseases, reducing mortality and planning. Recent study used from Artificial Neural Networks and Logistic Regression models as an effective tool in the prediction of nonlinear processes to predict the rate of asthma admissions related to Climatic parameters in Sanandaj/Sine city. Used data during period of 8-years (2001-2008) collected from synoptic station and Toheid and Beasat hospitals in the Sanandaj/Sine city. Then, the climatic parameters and rate of asthma admissions considered as an input and output data of models, respectively.
Result and DiscussionThe results of the output of two nonlinear models of artificial neural network and Logit in examining the effect of climatic parameters on the number of the asthma patients in Sanandaj/Sine showed that the monthly average parameters with high coefficient of determination (R2=0.98) of temperature (average, minimum, maximum) and QFE pressure in the artificial neural network model and The monthly average minimum temperature, QFF pressure and wind speed (in Knot) in the Logit model have had the greatest impact on the rate of asthma admissions in the city. As the wind speed in the Logit model is more effective than other climatic parameters, that it is clear with the logarithmic superiority (-0.977) and the Wald coefficient (85.616). In general, air pressure, temperature and wind speed are the most effective climatic parameters on the number of asthma patients visiting the hospital. Therefore, depending on the accuracy of the models, the above argument means that among the parameters examined, the elements are more important than other parameters in the city. As the climatic elements have a more effective role in the admission patients to the hospital, and their fluctuations will be more significant in patients' fluctuations. The effects of environmental parameters (climate and pollutants) on diseases have previously been investigated as well, so that the results of previous logistic regression have display a increase respiratory disease, vulnerability of children to asthma and an increase in allergies; In the present study, the results of Logit model (69.5%) also indicate that decrease in the average minimum temperature lead to a decrease in the number of the asthma patients, it means that the rate of asthma is more less in temperatures close to zero or higher and vice versa, the admission more higher in the colder temperature (below zero); in the other words, the more balanced the temperature has the lower the rate, and in the colder the ambient temperature has the highest the number of asthma patients. Thus, comparison the present results and previous studies show that admissions change depending on climate, geographic position and the fluctuation of the elements and then the specific geographical location and the different climatic types of a region will play a decisive role in the number of asthma visitors to hospital.
ConclusionThe results indicated that Artificial Neural Network model predicted the asthma admissions related to monthly minimum, maximum and average temperatures with considerable accuracy, so that the correlation between actual and predicted data is significant with 0.01 coefficient and 0.99 confidence. Also, Input parameters in the Logit method shows that the rate of asthma admissions affected by parameters of average minimum temperature, average pressure QFF and average wind speed (in knot). In other words, the logarithmic ratio of each of cited parameters is significant with β-coefficients (-0.517), (-0.734) and (-0.977), respectively, that throughout of studied parameters is wind element of effective in asthma admissions then others to the hospital. In general, Artificial Neural Network model showed more sufficiency and accuracy than Logit model. As a result, both Logistic Regression and the Artificial Neural Network methods show that climatic parameters have a greater than 50% effect on the number of asthma patients referred to the hospital (the accuracy models: 69.5 and 98, respectively). In the Artificial Neural Network model, the most accurate possible result shows the more effective role of climatic parameters of temperature and air pressure on the asthma patients. Also, filtering the parameters examined at the output of the Logistic model showed the most possible coefficients for minimum temperature, QFF air pressure and wind speed (knot), among which wind speed was the most important element. Finally, the accuracy of the models showed that the Artificial Neural Network model has a higher accuracy depending on the coefficient of determination and highest correlation. Thus, Artificial Neural Network and Logit as nonlinear methods could well predict the relationship between climatic parameters and the number of the asthma patients. Also, according to the appropriate selection of input parameters and determination of different structures in the neural network is possible to design different models with the highest efficiency and can be considered as an effective and powerful tool in estimating similar studies.
Keywords: Asthma, Artificial neural network, Climate, Logit, Logistic Regression, Sanandaj, Sine
- نتایج بر اساس تاریخ انتشار مرتب شدهاند.
- کلیدواژه مورد نظر شما تنها در فیلد کلیدواژگان مقالات جستجو شدهاست. به منظور حذف نتایج غیر مرتبط، جستجو تنها در مقالات مجلاتی انجام شده که با مجله ماخذ هم موضوع هستند.
- در صورتی که میخواهید جستجو را در همه موضوعات و با شرایط دیگر تکرار کنید به صفحه جستجوی پیشرفته مجلات مراجعه کنید.